Please write your homework neatly. Don't try to cram all the problems into the minimum space. Show your work clearly; useful diagrams are always appropriate and may get extra points. You may work with others, but the paper you submit should be your own. I expect numeric answers to have a reasonable number of significant figures and proper units.

Note: WebAssign grades only on the answer; I will grade only (mostly) on the method! **Make your method clear.**

1. Write out your solution (especially the graph) for #3. Use the numbers given in your textbook; Ch 2, problem 17 on p. 31.

2. Convert the acceleration 35 m/s^2 into Swiss Klafter/minute2. The conversion factor for the Swiss klafter is $1 \text{klafter} = 1.8000 \text{ m}$.

3. **Five Clocks** Five clocks are being tested in a lab. Exactly at noon, as determined by the WWV time signal, on successive days of a week the clocks read the values given in the following table. Rank the 5 clocks according to their relative value as good timekeepers, best to worst. **Justify your choice.**

<table>
<thead>
<tr>
<th>Clock</th>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>11:59:59</td>
<td>12:00:02</td>
<td>11:59:57</td>
<td>12:00:07</td>
<td>12:00:02</td>
<td>11:59:56</td>
<td>12:00:03</td>
</tr>
<tr>
<td>E</td>
<td>12:03:59</td>
<td>12:02:49</td>
<td>12:01:54</td>
<td>12:01:52</td>
<td>12:01:32</td>
<td>12:01:22</td>
<td>12:01:12</td>
</tr>
</tbody>
</table>