SPIE Fundamentals of Optics

Table of Contents

Module 1.1 Nature and properties of light: General Introduction
 Objectives 2
 Opening Demo 3

Basic Concepts
 A. Intro to photonics 5
 B. Phontonics opportunities 5
 C. Properties of light 6
 Dual nature of light 7
 Wave model 9
 Polarization 12
 Huygens’ Principle 14
 Superposition 14
 Reflection 15
 Refraction 16
 Diffraction 16
 Interference 17
 D. The electromagnetic spectrum 18
 Spectra of light sources 20
 Atomic spectra 21
 Molecular spectra 23
 E. Blackbody radiation 23
 F. Interactions of light with matter 26
 Absorption 26
 Scattering 26

Laboratories 28
 Lab 1.1A Finding the speed of red light in optical-grade plastic 28
 Lab 1.1B Determining the wavelength of red light 32
 Lab 1.1C The spectrum of colored light 33
 Lab 1.1D The polarization of light 35

Problems/Exercises 37

Metric prefixes 38

Module 1.2 Light sources and laser safety: General Introduction
 Objectives 40
 Opening Demo 41

Basic Concepts
 I. Nonlaser light sources 42
 A. Incandescent sources 45
 B. Fluorescent light sources 46
 C. High-intensity discharge lamps (HID) 46
 D. Flashlamps and arc lamps 47
 E. Light-emitting diodes (LED) 47
II. Concepts of laser safety
 A. Eye hazards
 B. Absorption of radiation by the eye
 C. The skin
 D. Laser safety standards and safety classifications
 Laser hazard classifications
 Types of controls: Engineering, Administrative, Personal Protective
 Maximum permissible exposure (MPE)
 Absorption, Lambert’s Law, and optical density
 Laser safety signs
 Laser accidents
 ** Safety rules for all lasers, regardless of output power level
 Nonbeam hazards
 Fire hazard
 Explosion hazard
 Electrical hazard
 Chemical hazards

Laboratories

2.1A Power in irradiance of a HeNe laser beam
2.1B Irradiance of a diverging beam

Other Resources

Problems/Exercises

Module 1.3 Basic geometrical optics
 Objectives
 Opening Demos

Basic Concepts

I. The laws of reflection and refractions
 A. Light rays and light waves
 B. Reflection of light from optical surfaces
 1. The law of reflection: plane surface
 2. Reflection from a curved surface
 C. Reflection of light from optical interfaces
 1. Index of refraction
 2. Snell’s Law
 3. Critical angle and total internal reflection (TIR)
 D. Refraction in prisms
 1. Minimum angle of deviation
 2. Dispersion of light
 3. Special applications of prisms

II. Image formation with mirrors
 A. Images formed with plane mirrors
 B. Images formed with spherical mirrors
 1. Graphical ray-trace method
 2. Key rays used in ray tracing
C. Mirror formulas for image location
 1. Derivation of the mirror formula
 2. Sign convention
 3. Magnification of a mirror image

III. Image formation with lenses
 A. Function of a lens
 B. Types of lenses
 1. Converging and diverging thin lenses
 2. Focal points of thin lenses
 3. \(f \)-number and numerical aperture of a lens
 C. Image location by ray tracing
 D. Lens formulas for thin lenses
 1. Equations for thin lens calculations
 2. Sign conventions for thin lens formulas

Laboratory
 Lab 3.1A Index of refraction of a prism material
 Lab 3.1B Total internal reflection (TIR)
 Lab 3.1C Index of refraction of a thin lens
 Lab 3.1D Measuring the focal lengths of thin lenses

Other Resources

Problems/Exercises

Module 1.4 Basic physical optics
 Objectives
 Opening Demos

Basic Concepts

I. Light waves and physical optics
 A. Physics of waves and wave motion
 B. The mathematics of sinusoidal waveforms (optional) *

II. Interaction of light waves
 A. The principle of superposition
 B. Huygens’ wavelets

III. Interference
 A. Constructive and destructive interference
 B. Young’s double-slit interference experiment
 1. Detailed analysis of interference from a double slit
 2. Intensity variation in the interference pattern
 C. Thin-film interference
 1. Single-film interference
 2. Single-layer antireflection (AR) coat

IV. Diffraction
 A. Diffraction by a single slit
B. Fraunhofer and Fresnel diffraction 141
 1. Criteria for far-field and near-field diffraction 142
 2. Several typical Fraunhofer diffraction patterns 144
C. Diffraction grating 146
D. Diffraction-limited optics 149

V. Polarization 150
 A. Polarization – a simple analogy 151
 B. Polarization of light waves 152
 C. Law of Malus 153
 D. Polarization by reflection and Brewster’s angle 155
 E. Brewster windows in a laser cavity 157

Laboratory 159
 Lab 4.1A Quantitative mapping of an Airy diffraction pattern 161
 Lab 4.1B Determine the wavelength of light with a reflection grating 161
 Lab 4.1C Conversion of unpolarized light to linearly polarized light 162

Other Resources 163
Problems/Exercises 164

Module 1.5 Lasers 5-1
 Objectives 5-2
 Opening Demos 5-4

Basic Concepts

I. Requirements for a laser 5-5
 A. Laser Gain Medium 5-5
 Population inversion in gases 5-10
 Population inversion in liquids 5-11
 Population inversion in crystalline solids and glasses 5-11
 Population inversion in semiconductors 5-12
 Bandwidth of laser gain medium 5-14
 B. Laser pumping sources 5-15
 Electron pumping
 Optical pumping
 C. Laser beam properties 5-17
 Shape of gain medium
 Growth of beam and saturation
 Longitudinal cavity modes 5-20
 Transverse modes 5-22
 Stable laser cavities or resonators 5-25
 Unstable resonators 5-27
 Q-switching
 Mode locking 5-28

II. Laser properties related to applications 5-29
 A. Collimation
 B. Monochromaticity
C. Coherence 5-30
D. Intensity and Radiance 5-31
E. Focusability 5-31

III. Examples of common lasers 5-32
A. HeNe 5-33
B. Argon ion and Krypton ion 5-33
C. HeCd 5-33
D. Copper vapor 5-33
E. CO₂ 5-33
F. Excimer 5-34
G. Organic dye 5-34
H. Ruby 5-34
I. Nd:YAG and Nd:glass 5-34
J. Ti:Al₂O₃ 5-35
K. Erbium fiber 5-35
L. Semiconductor lasers (solid state) 5-35

IV. Operation of a HeNe laser 5-36
A. Laser structure 5-37
B. Laser operation 5-37
C. Laser beam development 5-38
E. Longitudinal frequency modes 5-39
E. Transverse spatial beam modes 5-39
F. Laser cavity properties 5-39
G. HeNe laser wavelengths 5-40

Laboratories 5-40
5.1 Alignment of laser mirror cavity 5-40
5.2 Laser beam sensitivity to mirror beam alignment 5-40
5.3 Operation of the laser at 632.8 nm with several different laser mirror configurations 5-40
5.4 Single-mode and multimode (transverse or spatial mode) operation 5-40
5.5 Operation of the laser in the green at 543.5 nm 5-40
5.6 Variation of laser power with discharge current 5-40
Problems/Exercises 5-43

Module 1.6 Optical detectors and human vision 211
Objectives 212
Opening Demos 213

Basic Concepts 214

I. Basic information on light detectors 214
A. Role of an optical detector 214
B. Types of optical detectors 216
C. Detector characteristics 216
D. Noise considerations 220

II. Types of detectors 222
A. Photon detectors
 Photovoltaic effect
 Photoemissive effect
 Photoconductivity
 Photodiodes
 PIN photodiodes
 Avalanche photodiodes
 Photomultipliers

B. Thermal detectors
 Bolometers and thermistors
 Thermocouples
 Calorimeters
 Pyroelectric detectors

III. Calibration
 A. Response of detector
 B. Techniques to limit beam power
 Beam splitters
 Lambertian reflectors
 C. Electrical calibration

IV. Circuitry for optical detectors
 A. Basic circuit for a photovoltaic detector
 B. Basic circuit for a photoconductive detector

V. Human vision
 A. The eye as an optical detector
 B. Structure of the eye
 C. Operation of the eye
 D. Color
 Brightness
 Saturation
 Hue
 E. Defects of vision

Laboratory
 Lab 6.1 Measure chopped HeNe laser light
 Lab 6.2 Measure chopped argon laser light
 Lab 6.3 Determine the relative response of detector systems at several wavelengths

Problems/Exercises

Module 1.7 Optical waveguides and fibers
 Objectives
 Opening Demos
 Basic Concepts
 I. Historical Introduction
 II. Total internal reflection (TIR)
III. The optical fiber 258

IV. The coherent bundle 260

V. The numerical aperture (NA) 261

VI. Attenuation in optical fibers 262

VII. Pulse dispersion in step-index fibers (SIF) 264

VIII. Parabolic-index fibers (PIF) or gradient-index fibers (GRIN) 267

IX. Material dispersion 268

X. Dispersion and maximum bit rate 271

XI. Single-mode fibers (SMF) 273
 A. Spot size of the fundamental mode 275
 B. Splice loss due to transverse misalignment 276
 C. Waveguide dispersion 278
 D. Dispersion-shifted fibers 278

XII. Plastic optical fibers (POF) 278

XIII. Fiber optic sensors 282
 A. Extrinsic fiber optic sensors 283
 B. Intrinsic sensors 285
 - Mach-Xehnder interferometric sensor 286
 - Fiber optic rotation sensor – the fiber optic gyroscope (FOG) 286

Laboratory 288
 - Lab 7.1A Multimode and single-mode optical fibers 289
 - Lab 7.1B NA of a multimode optical fiber 289
 - Lab 7.1C Attenuation measurement 289
 - Lab 7.1D MFD (mode field diameter) measurement of an SMF 290
 - Lab 7.1E Splice loss across a multimode fiber joint 290

Problems/Exercises 291

Module 1.8 Fiber optic telecommunication 293

Objectives 294

Opening Activities 295

Introduction 296

I. Benefits of fiber optics 296

II. Basic fiber optic communication system 297

III. Transmission windows 298

IV. Fiber optic loss calculations 299

V. Types of fiber 301

VI. Dispersion 304

VII. Analog versus digital signals 307

VIII. Pulse code modulation 308

IX. Digital encoding schemes 310

X. Multiplexing 313
 A. Time-division multiplexing (TDM) 314
 - The digital telephone hierarchy 315
SONET 316
B. Wavelength-division multiplexing (WDM) 317

XI. Components – fiber optic cable 319
 Indoor cables
 Outdoor cables

XII. Fiber optic sources 321
 LEDs 322
 Laser diodes (LD) 324

XIII. Packaging 325
XIV. Direct versus external modulation 326
XV. Fiber optic detectors 328

XVI. Fiber optic system design considerations 330
 A. Power budget
 B. Bandwidth and rise time budgets 332
 Electrical and optical bandwidth
 C. Connectors 334
 Snap-in connector (SC)
 Twist-on single-fiber connectors (ST and FC)
 Duplex connectors
 D. Fiber optic couplers 335
 Transmissive type 336
 T-couplers 337
 E. Wavelength-division Multiplexers 338
 Erbium-doped fiber amplifiers (EDFA) 339
 Fiber Bragg gratings

What’s ahead? 341

Problems/Exercises 342
Laboratory 343
 Lab 8.1 Making a fiber optic coupler
 Lab 8.2 Wavelength-division multiplexing demonstration 344
 Lab 8.3 Measuring coupler loss 346

Module 1.9 Photonic devices for imaging, display, and storage 349
 Objectives 350
 Opening demonstration 351

Basic Concepts

I. Introductory concepts 352
 A. Sampling theory 352
 Pixels 353
 Resolution and spatial frequency 355
 Lab 9.1 Resolution 358
 B. Imaging Systems 358
Cameras 359
Lab 9.2 Camera 361
Scanners 361
Lab 9.3 Scanners 363
Files 364
Lab 9.4 Image files 366

II. Imaging devices 366
A. CCD cameras 368
 Structure 368
 Capabilities 368
B. Vidicons 369
 Structure 369
 Capabilities 370
C. Image intensifiers 371
 Structure 371
 Capabilities 371
Lab 9.5 Image intensifier

III. Display devices 371
A. Intro to cathode-ray tubes (CRT) 372
 Construction 372
 Capabilities 372
B. Flat-panel liquid-crystal displays 373
 Liquid-crystal theory 373
 Passive-matrix liquid-crystal displays 375
 Active-matrix liquid-crystal displays 376
C. Flat-panel electroluminescent displays 377
D. Flat-panel LED displays 377

Looking toward the future

Laboratory 377
 Lab 9.1 Determine the resolution of a CCD camera
Problems/Exercises 380

Module 1.10 Basic principles and applications of holography 381
 Objectives 382
 Opening demonstration 383
Basic Concepts

I. Types of holograms 384
 A. The reflection hologram 385
 B. Transmission holograms 385
 C. Hybrid holograms 385

II. The physical basis of holography 386
 The physical model 386
 Two-point source interference
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A trace of the maxima from two point sources</td>
<td>388</td>
</tr>
<tr>
<td>The physical model</td>
<td>391</td>
</tr>
<tr>
<td>Applications of the model</td>
<td>392</td>
</tr>
<tr>
<td>Creating the virtual image</td>
<td>394</td>
</tr>
<tr>
<td>Creating a real image</td>
<td>394</td>
</tr>
<tr>
<td>Redundancy</td>
<td>395</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>396</td>
</tr>
<tr>
<td>“Noise”</td>
<td>396</td>
</tr>
<tr>
<td>Beam ratio</td>
<td>397</td>
</tr>
<tr>
<td>Multiple scenes</td>
<td>397</td>
</tr>
<tr>
<td>White-light reflection holograms</td>
<td>399</td>
</tr>
<tr>
<td>Holographic interferometry</td>
<td>403</td>
</tr>
<tr>
<td>Coherence length (temporal coherence)</td>
<td>405</td>
</tr>
<tr>
<td>Thin holograms</td>
<td>406</td>
</tr>
<tr>
<td>Laboratory</td>
<td>408</td>
</tr>
<tr>
<td>Lab 10.1A Reflection hologram</td>
<td>409</td>
</tr>
<tr>
<td>Lab 10.1B</td>
<td></td>
</tr>
<tr>
<td>1. Transmission holograms without a mirror</td>
<td>410</td>
</tr>
<tr>
<td>2. Transmission holograms with one mirror</td>
<td>411</td>
</tr>
<tr>
<td>3. Two-channel transmission hologram</td>
<td>412</td>
</tr>
<tr>
<td>4. Diffraction hologram</td>
<td>412</td>
</tr>
<tr>
<td>5. Additional project</td>
<td>413</td>
</tr>
<tr>
<td>Lab 10.2 Advanced holography</td>
<td>413</td>
</tr>
<tr>
<td>A. Split-beam transmission hologram</td>
<td>414</td>
</tr>
<tr>
<td>B. Dual-object beam transmission hologram</td>
<td>415</td>
</tr>
<tr>
<td>C. Focused-image reflection hologram</td>
<td>416</td>
</tr>
<tr>
<td>Problems/Exercises</td>
<td>416</td>
</tr>
</tbody>
</table>