DEVELOPMENT OF RF MEMS SYSTEMS

Ivan Puchades, Ph.D.
Research Assistant Professor
Electrical and Microelectronic Engineering
Kate Gleason College of Engineering
Rochester Institute of Technology
82 Lomb Memorial Dr.
Rochester, NY 14623-5604

tel: 585-475-7294
fax: 585-475-5845
e-mail: ixpeme@rit.edu
Outline

• What are RF MEMS?
• Basic Receiver Architecture
• Roles and advantages of RF MEMS Devices
• RF MEMS Devices and Applications
• RF Switches
• RF Resonators
• Integrated Process Flows
• Challenges
• Summary
What are RF MEMS?

- MEMS – Micro Electro Mechanical Systems
- RF – Radio Frequency applications

- Ohmic switch and relays – DC switching
- Capacitive switch – Tunable RF Circuits
- Capacitive relay – Matching networks
- Mechanical resonator – Band pass filters
- Bulk acoustical resonator – Local Oscillators

Basic Receiver Architecture

- Superheterodyne receiver
 Uses **frequency mixing** or **heterodyning** to convert a received signal to a fixed **intermediate frequency**, which can be more conveniently processed than the original radio carrier frequency.

Diagram

- **RF Amplifier**
- **Mixer**
- **Filter**
- **IF Amplifier**
- **Demodulator or detector**

Bandpass filter \(f_{IF} = f_{LO} - f_d \)

\(f_{IF} \) is constant

Local Oscillator

- **Mixing of incoming** \(f_d \) and local \(f_{LO} \)
- Results in \(f_{LO} - f_d, f_{LO} + f_d, f_d, f_{LO} \) and harmonics.

- \(f_{LO} \) tracks incoming \(f_d \) so that \(f_{IF} \) is always the same

IF
- 455 kHz for AM radio
- 10.7 MHz for broadcast FM receivers,
- 38.9 MHz (Europe) or 45 MHz (US) for television
- 70 MHz for satellite and terrestrial microwave equipment.

RF Tuning, Mixers and Band-Pass Filter Circuits

- Band-pass Filters
- Non-linearity Mixers
- Sampling mixers

RF Amplifier → Mixer → Filter → IF Amplifier → Demodulator Audio Amplifier

Local Oscillator

Tuned RF amplifier, 550-1000 KHz, tuned to 1490 KHz
Station at 1490 KHz
Station at 2400 KHz

Tuned LO 1005 - 2045 KHz, tuned to 1945 KHz

http://en.wikipedia.org/wiki/Superheterodyne_receiver
Passive RF Components

Typical passive devices:
• LC Resonators
• Bulky/large inductors and capacitors
• **Low Q** (low frequency selectivity, lossy – Energy loss)

Passive Devices with high Q’s:
• Ceramic RF Filters
• SAW RF Filter – surface acoustic wave filter
• Quartz Crystal
• Off chip inductors
Disadvantages – Off chip, large, expensive

RF MEMS:
• Variable capacitors and switches
• Mechanically resonating structures
Advantages: **high Q**, inexpensive, small and potentially integrated

http://mems.sandia.gov/about/rf-mems.html
RF MEMS Switches, switched capacitors and varactors

- Ohmic switch and relays
- Tunable RF Circuits
- Matching networks

- Deflecting cantilever or fixed-fixed beam
- Electrostatic, electrothermal, magnetostatic or piezoelectric
- Lateral or vertical
- Series or shunt
- Capacitive or ohmic

RF Switches

a) Capacitive shunt, fixed-fixed beam
b) Ohmic series cantilever beam

Ohmic RF MEMS Switches

http://www.radantmems.com

Vibrating RF MEMS Resonators

- Filters and resonators
- Vibrating beam, comb, disc or ring which is sufficiently isolated from the surroundings in order to obtain a high Q_m.
- Actuation mechanism
 - Electrostatic, piezoelectric, thermal
- Suspension
 - Fixed-fixed, free-free, stem
- Vibrating geometry
 - Beam, comb, disc, ring
- Vibration mode
 - Bulk (extensional), elliptical (wine glass), flexural, radial contour, torsional

Types by vibration mode

- Vibration mode
 - Bulk (extensional), elliptical (wine glass), flexural, radial contour, torsional
 - Higher order vibration modes cannot also be used.

Co-fabrication of Electrostatic MEMS Switches and Resonators

- Three poly layers (electrode, resonators and anchor structures)
- Conformal sacrificial layer for the formation of small gap <100nm
- High Conductivity layer for low resistance switch
- 6 mask layers

Isolated conductive material

- <100nm gap
- 1um Poly
- 3500 Å Si$_3$N$_4$
- 2 um SiO$_2$
Tunable Filters

Co-fabrication of switches and resonators
RF MEMS Challenges

• Bandwidth, insertion loss and isolation:
 ✓ High $R_{\text{ON}}C_{\text{OFF}}$ or low $C_{\text{ON}}/C_{\text{OFF}}$
• Power handling:
 ✓ Electromigration (JRMS) and dielectric breakdown (VRMS) limits.
• Reliability:
 ✓ Temperature drift
 ✓ Dielectric charging
 ✓ Humidity-induced stiction
 ✓ Fatigue
 ✓ Contact degradation
 ✓ Creep
RF MEMS Challenges

• **Temperature drift**

Fig. 1: Plots of fractional frequency change versus temperature comparing AT-cut quartz crystals at various angles [6] with polysilicon μmechanical resonators.

• **Solutions:**
 - Temp compensation
 - Passive → SiO2 coating to cope with young’s modulus temp dependence, degenerated doping and geometry changes
 - Active → Micro-oven to control temp, bias compensation and phase locking.
RF MEMS Challenges

- **Dielectric charging**

 R.W. Herfst, “Characterization of dielectric charging in RF MEMS capacitive switches”, Semiconductor Components, University of Twente.

- **Solutions:**
 - Reduce dc bias, use ac bias,
 - Avoid hard contact (dimples, holes)
 - Non-dielectric switches
RF MEMS Challenges

- **Humidity-induced stiction**

- **Solutions:**
 - Supercritical drying (liquid CO2 at critical point)
 - Dry etching
 - Hydrophobic coatings
 - Recoverable

RF MEMS Challenges

- Contact degradation

Solutions:
- Reduce bias current
- Avoid hard contact (dimples, holes)
- Vacuum encapsulation
- Degradation resistant materials

Conclusion

• RF MEMS applications
 o Band selective receivers

• RF MEMS fabrication
 o Co-fabrication of switches and resonators

• RF MEMS challenges
 o Fabrication, materials and reliability
Appendix
RF MEMS Devices/applications

- RF MEMS switches, switched **capacitors** and **varactors**
 - Ohmic switch and relays
 - Capacitive switch – Tunable RF Circuits
 - Capacitive relay – Matching networks

- Vibrating RF MEMS resonators
 - Band pass filters
 - Mixers
 - Reference oscillators

http://mems.sandia.gov/about/rf-mems.html
Resonator Modeling

- Flexural mode fixed-fixed beam
- Modeled by two capacitors in series.
- Most resonators can be modeled this way