Bounding Intersections of Orbit Sets with Curves

Joel D. Dreibelbis
1 Introduction
 • Orbit Sets and Curves
 • Strategy for Obtaining an Upper Bound on |Orb(\vec{q}) \cap C|
 • General Results on Orbit Sets Intersecting Varieties

2 Orbit Sets Induced by a Linear Map with Eigenvalues in \(\mathbb{R} \)
 • Preliminaries
 • Real Eigenvalues Theorem

3 Orbit Sets Induced by a Linear Map with Eigenvalues in \(\mathbb{Q}_p \)
 • Overview of \(\mathbb{Q}_p \)
 • Algorithm by Example

4 Conclusion
 • Summary
 • Open Questions
Outline

1. Introduction
 - Orbit Sets and Curves
 - Strategy for Obtaining an Upper Bound on $|\text{Orb}_\Phi(\vec{q}) \cap C|$
 - General Results on Orbit Sets Intersecting Varieties

2. Orbit Sets Induced by a Linear Map with Eigenvalues in \mathbb{R}
 - Preliminaries
 - Real Eigenvalues Theorem

3. Orbit Sets Induced by a Linear Map with Eigenvalues in \mathbb{Q}_p
 - Overview of \mathbb{Q}_p
 - Algorithm by Example

4. Conclusion
 - Summary
 - Open Questions
Outline

1. Introduction
 - Orbit Sets and Curves
 - Strategy for Obtaining an Upper Bound on $|\text{Orb}_\Phi(\vec{q}) \cap C|$
 - General Results on Orbit Sets Intersecting Varieties

2. Orbit Sets Induced by a Linear Map with Eigenvalues in \mathbb{R}
 - Preliminaries
 - Real Eigenvalues Theorem

3. Orbit Sets Induced by a Linear Map with Eigenvalues in \mathbb{Q}_p
 - Overview of \mathbb{Q}_p
 - Algorithm by Example

4. Conclusion
 - Summary
 - Open Questions
Outline

1. Introduction
 - Orbit Sets and Curves
 - Strategy for Obtaining an Upper Bound on $|\text{Orb}_\Phi(\vec{q}) \cap C|$
 - General Results on Orbit Sets Intersecting Varieties

2. Orbit Sets Induced by a Linear Map with Eigenvalues in \mathbb{R}
 - Preliminaries
 - Real Eigenvalues Theorem

3. Orbit Sets Induced by a Linear Map with Eigenvalues in \mathbb{Q}_p
 - Overview of \mathbb{Q}_p
 - Algorithm by Example

4. Conclusion
 - Summary
 - Open Questions
The Orbit Set

- $\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear map defined as
 $\Phi(x, y) := (ax + by, cx + dy)$ for some $a, b, c, d \in \mathbb{R}$.
- $\vec{q} \in \mathbb{R}^2$ is the initial point in the orbit set.
- $\text{Orb}_\Phi(\vec{q}) := \{\Phi^n(\vec{q}) \mid n \in \mathbb{N}\} \subset \mathbb{R}^2$ is the orbit set of \vec{q} under Φ.

Note: $\Phi^n := \Phi(\Phi^{n-1})$.
The Orbit Set

- $\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear map defined as
 $\Phi(x, y) := (ax + by, cx + dy)$ for some $a, b, c, d \in \mathbb{R}$.
- $\vec{q} \in \mathbb{R}^2$ is the initial point in the orbit set.
- $\text{Orb}_\Phi(\vec{q}) := \{ \Phi^n(\vec{q}) \mid n \in \mathbb{N} \} \subset \mathbb{R}^2$ is the orbit set of \vec{q} under Φ.

 Note: $\Phi^n := \Phi(\Phi^{n-1})$.
The Orbit Set

- $\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear map defined as $\Phi(x, y) := (ax + by, cx + dy)$ for some $a, b, c, d \in \mathbb{R}$.
- $\vec{q} \in \mathbb{R}^2$ is the initial point in the orbit set.
- $\text{Orb}_\Phi(\vec{q}) := \{\Phi^n(\vec{q}) \mid n \in \mathbb{N}\} \subset \mathbb{R}^2$ is the orbit set of \vec{q} under Φ.

Note: $\Phi^n := \Phi(\Phi^{n-1})$.
Example of an Orbit Set

Let $\Phi(x, y) := (2x, -3y)$, $\vec{q} := (6, 1)$, and $P_n := \Phi^n(\vec{q})$.

Then, $\text{Orb}_\Phi(\vec{q}) = \{(6, 1), (12, -3), (24, 9), (48, -27), (96, 81), \ldots\}.$
Example of an Orbit Set

Let $\Phi(x, y) := (2x, -3y)$, $\vec{q} := (6, 1)$, and $P_n := \Phi^n (\vec{q})$.
Then, $\text{Orb}_\Phi (\vec{q}) = \{(6, 1), (12, -3), (24, 9), (48, -27), (96, 81), \ldots \}$.
The Eigenvalues of Φ

- $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map defined as
 $\Phi(x, y) := (ax + by, cx + dy)$ for some $a, b, c, d \in \mathbb{R}$.

- $M := \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{Mat}_{2 \times 2}(\mathbb{R})$ is the associated matrix of Φ since
 $\Phi^n(x, y) = M^n \cdot \begin{bmatrix} x \\ y \end{bmatrix}$ where $\Phi^n := \Phi^{n-1} \circ \Phi$.

- The eigenvalues of Φ are the eigenvalues of M.

The Eigenvalues of Φ
The Eigenvalues of Φ

- $\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear map defined as
 $\Phi(x, y) := (ax + by, cx + dy)$ for some $a, b, c, d \in \mathbb{R}$.

- $M := \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in Mat_{2 \times 2}(\mathbb{R})$ is the associated matrix of Φ since
 $\Phi^n(x, y) = M^n \cdot \begin{bmatrix} x \\ y \end{bmatrix}$ where $\Phi^n := \Phi^{n-1} \circ \Phi$.

- The eigenvalues of Φ are the eigenvalues of M.

J. Dreibelbis
Bounding Intersections of Orbit Sets with Curves
The Eigenvalues of Φ

- $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map defined as
 $\Phi(x, y) := (ax + by, cx + dy)$ for some $a, b, c, d \in \mathbb{R}$.
- $M := \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{Mat}_{2 \times 2}(\mathbb{R})$ is the associated matrix of Φ since
 $\Phi^n(x, y) = M^n \cdot \begin{bmatrix} x \\ y \end{bmatrix}$ where $\Phi^n := \Phi^{n-1} \circ \Phi$.
- The eigenvalues of Φ are the eigenvalues of M.

The Eigenvalues of Φ:

- $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map defined as
 $\Phi(x, y) := (ax + by, cx + dy)$ for some $a, b, c, d \in \mathbb{R}$.
- $M := \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{Mat}_{2 \times 2}(\mathbb{R})$ is the associated matrix of Φ since
 $\Phi^n(x, y) = M^n \cdot \begin{bmatrix} x \\ y \end{bmatrix}$ where $\Phi^n := \Phi^{n-1} \circ \Phi$.
- The eigenvalues of Φ are the eigenvalues of M.

J. Dreibelbis Bounding Intersections of Orbit Sets with Curves
Review of Curves

- $C := \left\{(x, y) \in \mathbb{R}^2 \right\mid \sum_{\substack{i+j \leq d \\ i,j \geq 0}} a_{i,j} x^i y^j = 0 \right\}$ where $a_{i,j} \in \mathbb{R}$ and $a_{i,d-i} \neq 0$ for some i is a curve of degree d. For example, $Z(6xy + x^2y + 5y + 7)$ is a curve of degree 3.

- A curve C of degree d has at most $(d + 1)(d + 2)/2$ coefficients with $\delta := (d + 1)(d + 2)/2 - 1 = d(d + 3)/2$ "degrees of freedom." For example, a conic (curve of degree 2) has five degrees of freedom (five "sufficiently independent" points determine a unique conic).
Review of Curves

- \(C := \left\{ (x, y) \in \mathbb{R}^2 \left| \sum_{i+j \leq d, i,j \geq 0} a_{i,j} x^i y^j = 0 \right. \right\} \) where \(a_{i,j} \in \mathbb{R} \) and \(a_{i,d-i} \neq 0 \) for some \(i \) is a curve of degree \(d \). For example, \(Z(6xy + x^2y + 5y + 7) \) is a curve of degree 3.

- A curve \(C \) of degree \(d \) has at most \((d + 1)(d + 2)/2\) coefficients with \(\delta := (d + 1)(d + 2)/2 - 1 = d(d + 3)/2 \) "degrees of freedom." For example, a conic (curve of degree 2) has five degrees of freedom (five "sufficiently independent" points determine a unique conic).
Famous Theorem of Curves Intersecting

Theorem (Bézout 1779)

If C_1 is a curve of degree d_1, C_2 is a curve of degree d_2, and $|C_1 \cap C_2| < \infty$, then $|C_1 \cap C_2| \leq d_1 d_2$.
The Main Questions

Question (Non-trivial)

Can an orbit set intersect a curve in more points than the "degrees of freedom" for the curve (but in only finitely many points)?

Question (Uniformity)

Is there a uniform upper bound, dependent only on the degree of a curve, for $|\text{Orb}_\Phi(\vec{q}) \cap C|$ over all linear maps and all starting points when the intersection is finite?
The Main Questions

Question (Non-trivial)

Can an orbit set intersect a curve in more points than the "degrees of freedom" for the curve (but in only finitely many points)?

Question (Uniformity)

Is there a uniform upper bound, dependent only on the degree of a curve, for $|\text{Orb}_\Phi(\vec{q}) \cap C|$ over all linear maps and all starting points when the intersection is finite?
Example of an Orbit Set

Let $\Phi(x, y) := (2x, -3y)$, $\bar{q} := (6, 1)$, and $P_n := \Phi^n(\bar{q})$.

Then, $\text{Orb}_\Phi(\bar{q}) := \{P_n \mid n \in \mathbb{N}\}$ and so
$\text{Orb}_\Phi(\bar{q}) = \{(6, 1), (12, -3), (24, 9), (48, -27), (96, 81), \ldots\}$.
Example of an Orbit Set

Let $\Phi(x, y) := (2x, -3y)$, $\vec{q} := (6, 1)$, and $P_n := \Phi^n (\vec{q})$. Then, $\text{Orb}_\Phi (\vec{q}) := \{ P_n | n \in \mathbb{N} \}$ and so

$\text{Orb}_\Phi (\vec{q}) = \{ (6, 1), (12, -3), (24, 9), (48, -27), (96, 81), \ldots \}$.
Example of an Orbit Set: Intersecting with Lines
Observations

- Lines have 2 degrees of freedom.
- There is an orbit set and a line with 3 points of intersection.
- For a curve C of degree d that has finite intersection with an orbit set induced by a linear map Φ, there is a uniform bound that depends on the eigenvalues of Φ:

<table>
<thead>
<tr>
<th>Eigenvalues in \mathbb{R}^+</th>
<th>Uniform Bound</th>
<th>Due to</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{R}</td>
<td>$2\delta - 1$</td>
<td>D.</td>
</tr>
<tr>
<td>\mathbb{Q}_p</td>
<td>$p^2\delta$</td>
<td>D. (conjecture)</td>
</tr>
<tr>
<td>\mathbb{C}</td>
<td>$(2N)^{35N^3}$</td>
<td>Schlickewei</td>
</tr>
</tbody>
</table>

where $\delta = d(d + 3)/2$ and $N = \delta + 1$.

Due to Rolle’s Theorem
Observations

- Lines have 2 degrees of freedom.
- There is an orbit set and a line with 3 points of intersection.
- For a curve C of degree d that has finite intersection with an orbit set induced by a linear map Φ, there is a uniform bound that depends on the eigenvalues of Φ:

<table>
<thead>
<tr>
<th>Eigenvalues in</th>
<th>Uniform Bound</th>
<th>Due to</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{R}^+</td>
<td>δ</td>
<td>Rolle’s Theorem</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>$2\delta - 1$</td>
<td>D.</td>
</tr>
<tr>
<td>\mathbb{Q}_p</td>
<td>$p^2\delta$</td>
<td>D. (conjecture)</td>
</tr>
<tr>
<td>\mathbb{C}</td>
<td>$(2N)^{35N^3}$</td>
<td>Schlickewei</td>
</tr>
</tbody>
</table>

where $\delta = d(d + 3)/2$ and $N = \delta + 1$.
Observations

- Lines have 2 degrees of freedom.
- There is an orbit set and a line with 3 points of intersection.
- For a curve C of degree d that has finite intersection with an orbit set induced by a linear map Φ, there is a uniform bound that depends on the eigenvalues of Φ:

<table>
<thead>
<tr>
<th>Eigenvalues in</th>
<th>Uniform Bound</th>
<th>Due to</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{R}^+</td>
<td>δ</td>
<td>Rolle’s Theorem</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>$2\delta - 1$</td>
<td>D.</td>
</tr>
<tr>
<td>\mathbb{Q}_p</td>
<td>$p^2\delta$</td>
<td>D. (conjecture)</td>
</tr>
<tr>
<td>\mathbb{C}</td>
<td>$(2N)^{35N^3}$</td>
<td>Schlickewei</td>
</tr>
</tbody>
</table>

where $\delta = d(d + 3)/2$ and $N = \delta + 1$.
Examples with Infinite Intersection

- Let $\Phi(x, y) := (2x, 2y)$, $\vec{q} := (1, 2)$, and $C := \mathbb{Z}(y - 2x)$. Then $\Phi^n(\vec{q}) \in C$ for all n and $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$.

- Let $\theta := \sqrt{2}\pi$,
 $\Phi(x, y) := (x \cos(\theta) - y \sin(\theta), x \sin(\theta) + y \cos(\theta))$, $\vec{q} := (1, 0)$, and $C := \mathbb{Z}(x^2 + y^2 - 1)$. Then $\Phi^n(\vec{q}) \in C$ for all n and $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$.

- Let $\theta := \pi/3$,
 $\Phi(x, y) := (2x \cos(\theta) - 2y \sin(\theta), 2x \sin(\theta) + 2y \cos(\theta))$, $\vec{q} := (1, 1)$, and $C := \mathbb{Z}(x^2 - y^2)$. Then $\Phi^n(\vec{q}) \in C$ for $n = 3k$ and $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$.

- If $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$ then there is some $k \in \mathbb{Z}^+$ and a curve $D \subseteq C$ so that $\Phi^k(D) = D$.

If $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$ then there is some $k \in \mathbb{Z}^+$ and a curve $D \subseteq C$ so that $\Phi^k(D) = D$.
Examples with Infinite Intersection

- Let $\Phi(x, y) := (2x, 2y)$, $\vec{q} := (1, 2)$, and $C := \mathbb{Z}(y - 2x)$. Then $\Phi^n(\vec{q}) \in C$ for all n and $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$.

- Let $\theta := \sqrt{2}\pi$,
 $\Phi(x, y) := (x \cos(\theta) - y \sin(\theta), x \sin(\theta) + y \cos(\theta))$, $\vec{q} := (1, 0)$, and $C := \mathbb{Z}(x^2 + y^2 - 1)$. Then $\Phi^n(\vec{q}) \in C$ for all n and $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$.

- Let $\theta := \pi/3$,
 $\Phi(x, y) := (2x \cos(\theta) - 2y \sin(\theta), 2x \sin(\theta) + 2y \cos(\theta))$, $\vec{q} := (1, 1)$, and $C := \mathbb{Z}(x^2 - y^2)$. Then $\Phi^n(\vec{q}) \in C$ for $n = 3k$ and $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$.

- If $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$ then there is some $k \in \mathbb{Z}^+$ and a curve $D \subseteq C$ so that $\Phi^k(D) = D$.

Examples with Infinite Intersection

- Let \(\Phi(x, y) := (2x, 2y) \), \(\vec{q} := (1, 2) \), and \(C := \mathbb{Z}(y - 2x) \). Then \(\Phi^n(\vec{q}) \in C \) for all \(n \) and \(|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty \).

- Let \(\theta := \sqrt{2}\pi \),
 \(\Phi(x, y) := (x \cos(\theta) - y \sin(\theta), x \sin(\theta) + y \cos(\theta)) \), \(\vec{q} := (1, 0) \), and \(C := \mathbb{Z}(x^2 + y^2 - 1) \). Then \(\Phi^n(\vec{q}) \in C \) for all \(n \) and \(|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty \).

- Let \(\theta := \pi/3 \),
 \(\Phi(x, y) := (2x \cos(\theta) - 2y \sin(\theta), 2x \sin(\theta) + 2y \cos(\theta)) \),
 \(\vec{q} := (1, 1) \), and \(C := \mathbb{Z}(x^2 - y^2) \). Then \(\Phi^n(\vec{q}) \in C \) for \(n = 3k \) and \(|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty \).

- If \(|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty \) then there is some \(k \in \mathbb{Z}^+ \) and a curve \(D \subseteq C \) so that \(\Phi^k(D) = D \).
Examples with Infinite Intersection

- Let $\Phi(x, y) := (2x, 2y)$, $\vec{q} := (1, 2)$, and $C := Z(y - 2x)$. Then $\Phi^n(\vec{q}) \in C$ for all n and $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$.

- Let $\theta := \sqrt{2}\pi$,
 $\Phi(x, y) := (x \cos(\theta) - y \sin(\theta), x \sin(\theta) + y \cos(\theta))$, $\vec{q} := (1, 0)$, and $C := Z(x^2 + y^2 - 1)$. Then $\Phi^n(\vec{q}) \in C$ for all n and $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$.

- Let $\theta := \pi/3$,
 $\Phi(x, y) := (2x \cos(\theta) - 2y \sin(\theta), 2x \sin(\theta) + 2y \cos(\theta))$, $\vec{q} := (1, 1)$, and $C := Z(x^2 - y^2)$. Then $\Phi^n(\vec{q}) \in C$ for $n = 3k$ and $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$.

- If $|\text{Orb}_\Phi(\vec{q}) \cap C| = \infty$ then there is some $k \in \mathbb{Z}^+$ and a curve $D \subseteq C$ so that $\Phi^k(D) = D$.
Strategy

- Parameterize the coordinates of the points, P_n, in the orbit set, $\text{Orb}_\Phi(\vec{q})$, as $P_n = (f_1(n), f_2(n))$ for suitable functions $f_i(n)$.

 - If $P_n \in C = \mathbb{Z} \left(\sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} x^i y^j \right)$ then
 $$\sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} (f_1(n))^i (f_2(n))^j = 0.$$

 - The last summation will be a polynomial-exponential sum in n.

 - The poly-exp sum, when the eigenvalues of Φ are real, generates either 1 or 2 real differentiable functions that detect all of the integer zeroes.

 - The number of integer zeroes is then bounded by calculus techniques and the order of the poly-exp sum.
Parameterize the coordinates of the points, P_n, in the orbit set, $\text{Orb}_\Phi(\vec{q})$, as $P_n = (f_1(n), f_2(n))$ for suitable functions $f_i(n)$.

If $P_n \in C = \mathbb{Z} \left(\sum_{\substack{i+j \leq d \\ i,j \geq 0}} a_{i,j} x^i y^j \right)$ then $\sum_{\substack{i+j \leq d \\ i,j \geq 0}} a_{i,j} (f_1(n))^i (f_2(n))^j = 0$.

- The last summation will be a polynomial-exponential sum in n.
- The poly-exp sum, when the eigenvalues of Φ are real, generates either 1 or 2 real differentiable functions that detect all of the integer zeroes.
- The number of integer zeroes is then bounded by calculus techniques and the order of the poly-exp sum.
Parameterize the coordinates of the points, P_n, in the orbit set, $\text{Orb}_\Phi(\vec{q})$, as $P_n = (f_1(n), f_2(n))$ for suitable functions $f_i(n)$.

If $P_n \in C = \mathbb{Z} \left(\sum_{i+j\leq d \atop i,j \geq 0} a_{i,j} x^i y^j \right)$ then $\sum_{i+j\leq d \atop i,j \geq 0} a_{i,j} (f_1(n))^i (f_2(n))^j = 0$.

The last summation will be a polynomial-exponential sum in n.

The poly-exp sum, when the eigenvalues of Φ are real, generates either 1 or 2 real differentiable functions that detect all of the integer zeroes.

The number of integer zeroes is then bounded by calculus techniques and the order of the poly-exp sum.
Parameterize the coordinates of the points, P_n, in the orbit set, $\text{Orb}_\Phi(\vec{q})$, as $P_n = (f_1(n), f_2(n))$ for suitable functions $f_i(n)$.

If $P_n \in C = \mathbb{Z} \left(\sum_{i+j \leq d, \ i,j \geq 0} a_{i,j} x^i y^j \right)$ then $\sum_{i+j \leq d, \ i,j \geq 0} a_{i,j} (f_1(n))^i (f_2(n))^j = 0$.

The last summation will be a polynomial-exponential sum in n.

The poly-exp sum, when the eigenvalues of Φ are real, generates either 1 or 2 real differentiable functions that detect all of the integer zeroes.

The number of integer zeroes is then bounded by calculus techniques and the order of the poly-exp sum.
Strategy

- Parameterize the coordinates of the points, P_n, in the orbit set, $\text{Orb}_\Phi(\vec{q})$, as $P_n = (f_1(n), f_2(n))$ for suitable functions $f_i(n)$.

- If $P_n \in C = \mathbb{Z} \left(\sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} x^i y^j \right)$ then $\sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} (f_1(n))^i (f_2(n))^j = 0$.

- The last summation will be a polynomial-exponential sum in n.

- The poly-exp sum, when the eigenvalues of Φ are real, generates either 1 or 2 real differentiable functions that detect all of the integer zeroes.

- The number of integer zeroes is then bounded by calculus techniques and the order of the poly-exp sum.
A polynomial-exponential sum is a summation with the form

$$E(x) := \sum_{i=1}^{m} (P_i(x)b_i^x)$$

where $P_i(x) \in k[x]$ and $b_i \in k$ for some field k.

- The order of a poly-exp sum is $m + \sum_{i=1}^{m} \deg(P_i)$.
- These poly-exp sums show up in linear recurrences and the orbit set problem.
A polynomial-exponential sum is a summation with the form

\[E(x) := \sum_{i=1}^{m} (P_i(x)b_i^x) \]

where \(P_i(x) \in k[x] \) and \(b_i \in k \) for some field \(k \).

The order of a poly-exp sum is \(m + \sum_{i=1}^{m} \deg(P_i) \).

These poly-exp sums show up in linear recurrences and the orbit set problem.
Polynomial-Exponential Sums

- A polynomial-exponential sum is a summation with the form
 \[E(x) := \sum_{i=1}^{m} (P_i(x)b_i^x) \]

 where \(P_i(x) \in k[x] \) and \(b_i \in k \) for some field \(k \).

- The order of a poly-exp sum is \(m + \sum_{i=1}^{m} \deg(P_i) \).

- These poly-exp sums show up in linear recurrences and the orbit set problem.
Recurrence Sequences

- A linear recurrence sequence of order N over a field k is a sequence, $\{a_n\}_{n \in \mathbb{N}}$, of the form

$$a_{n+N} := \alpha_1 a_{n+N-1} + \alpha_2 a_{n+N-2} + \cdots + \alpha_N a_n$$

for $n \geq 0$ with initial values

$$(a_0, a_1, \ldots, a_{N-1}) := (\beta_0, \beta_1, \ldots, \beta_{N-1})$$

for some $\alpha_i, \beta_i \in k$ and $\alpha_N \neq 0$. (or just N-ary recurrence sequence over k for short).

- Characteristic polynomial $x^N - \alpha_1 x^{N-1} - \alpha_2 x^{N-2} - \cdots - \alpha_N$ with roots r_1, r_2, \ldots, r_m with r_i having multiplicity m_i so that

$$a_n = \sum_{i=1}^{m} \left(\sum_{j=1}^{m_i} c_{i,j} n^{j-1} \right) r_i^n.$$

- A recurrence sequence is non-degenerate if it takes on the value 0 finitely many times.
Recurrence Sequences

- A linear recurrence sequence of order N over a field k is a sequence, $\{a_n\}_{n\in\mathbb{N}}$, of the form

$$a_{n+N} := \alpha_1 a_{n+N-1} + \alpha_2 a_{n+N-2} + \cdots + \alpha_N a_n$$

for $n \geq 0$ with initial values
$$(a_0, a_1, \ldots, a_{N-1}) := (\beta_0, \beta_1, \ldots, \beta_{N-1})$$

for some $\alpha_i, \beta_i \in k$ and $\alpha_N \neq 0$. (or just N-ary recurrence sequence over k for short).

- Characteristic polynomial $x^N - \alpha_1 x^{N-1} - \alpha_2 x^{N-2} - \cdots - \alpha_N$ with roots r_1, r_2, \ldots, r_m with r_i having multiplicity m_i so that

$$a_n = \sum_{i=1}^{m} \left(\sum_{j=1}^{m_i} c_{i,j} n^{j-1} \right) r_i^n.$$

- A recurrence sequence is non-degenerate if it takes on the value 0 finitely many times.
Recurrence Sequences

- A linear recurrence sequence of order N over a field k is a sequence, $\{a_n\}_{n \in \mathbb{N}}$, of the form
 \[a_{n+N} := \alpha_1 a_{n+N-1} + \alpha_2 a_{n+N-2} + \cdots + \alpha_N a_n \]
 for $n \geq 0$ with initial values
 \((a_0, a_1, \ldots, a_{N-1}) := (\beta_0, \beta_1, \ldots, \beta_{N-1}) \) for some $\alpha_i, \beta_i \in k$ and $\alpha_N \neq 0$. (or just N-ary recurrence sequence over k for short).

- Characteristic polynomial $x^N - \alpha_1 x^{N-1} - \alpha_2 x^{N-2} - \cdots - \alpha_N$ with roots r_1, r_2, \ldots, r_m with r_i having multiplicity m_i so that
 \[a_n = \sum_{i=1}^{m} \left(\sum_{j=1}^{m_i} c_{i,j} n^{j-1} \right) r_i^n. \]

- A recurrence sequence is non-degenerate if it takes on the value 0 finitely many times.
Example of a Recurrence Sequence of Order 2

- \(a_{n+2} := a_{n+1} + a_n \) with \((a_0, a_1) := (0, 1) \).
- \(\{a_n\}_{n \in \mathbb{N}} = \{0, 1, 1, 2, 3, 5, 8, \ldots \} \).
- Characteristic polynomial is \(x^2 - x - 1 \) whose roots are \(\frac{1 \pm \sqrt{5}}{2} \).

\[
a_n = c_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + c_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n
\]

\[
a_0 = 0
\]
\[
a_1 = 1
\]

\[
a_n = \frac{\sqrt{5}}{5} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{\sqrt{5}}{5} \left(\frac{1 - \sqrt{5}}{2} \right)^n.
\]
- \(a_n \) is a poly-exp sum of order 2 (2 + 0 + 0).
Example of a Recurrence Sequence of Order 2

- \(a_{n+2} := a_{n+1} + a_n \) with \((a_0, a_1) := (0, 1)\).
- \(\{a_n\}_{n \in \mathbb{N}} = \{0, 1, 1, 2, 3, 5, 8, \ldots\} \).
- Characteristic polynomial is \(x^2 - x - 1 \) whose roots are \(\frac{1 \pm \sqrt{5}}{2} \).

\[
a_n = c_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + c_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n
\]

- \(a_0 = 0 \)
- \(a_1 = 1 \)

\[
a_n = \frac{\sqrt{5}}{5} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{\sqrt{5}}{5} \left(\frac{1 - \sqrt{5}}{2} \right)^n.
\]

- \(a_n \) is a poly-exp sum of order 2 (2 + 0 + 0).
Example of a Recurrence Sequence of Order 2

- $a_{n+2} := a_{n+1} + a_n$ with $(a_0, a_1) := (0, 1)$.
- $\{a_n\}_{n \in \mathbb{N}} = \{0, 1, 1, 2, 3, 5, 8, \ldots\}$.
- Characteristic polynomial is $x^2 - x - 1$ whose roots are $\frac{1 \pm \sqrt{5}}{2}$.

$$a_n = c_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + c_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

$a_0 = 0$
$a_1 = 1$

$$a_n = \frac{\sqrt{5}}{5} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{\sqrt{5}}{5} \left(\frac{1 - \sqrt{5}}{2} \right)^n.$$

a_n is a poly-exp sum of order 2 ($2 + 0 + 0$).
Example of a Recurrence Sequence of Order 2

- $a_{n+2} := a_{n+1} + a_n$ with $(a_0, a_1) := (0, 1)$.
- $\{a_n\}_{n \in \mathbb{N}} = \{0, 1, 1, 2, 3, 5, 8, \ldots\}$.
- Characteristic polynomial is $x^2 - x - 1$ whose roots are $\frac{1 \pm \sqrt{5}}{2}$.

$$a_n = c_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + c_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

$a_0 = 0$

$a_1 = 1$

$$a_n = \frac{\sqrt{5}}{5} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{\sqrt{5}}{5} \left(\frac{1 - \sqrt{5}}{2} \right)^n.$$
Example of a Recurrence Sequence of Order 2

- $a_{n+2} := a_{n+1} + a_n$ with $(a_0, a_1) := (0, 1)$.
- $\{a_n\}_{n \in \mathbb{N}} = \{0, 1, 1, 2, 3, 5, 8, \ldots\}$.
- Characteristic polynomial is $x^2 - x - 1$ whose roots are $\frac{1 \pm \sqrt{5}}{2}$.
-
 \[
 a_n = c_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + c_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n
 \]

 $a_0 = 0$

 $a_1 = 1$

- $a_n = \frac{\sqrt{5}}{5} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{\sqrt{5}}{5} \left(\frac{1 - \sqrt{5}}{2} \right)^n$.
- a_n is a poly-exp sum of order 2 ($2 + 0 + 0$).
Example of a Recurrence Sequence of Order 2

- \(a_{n+2} := a_{n+1} + a_n \) with \((a_0, a_1) := (0, 1) \).
- \(\{a_n\}_{n \in \mathbb{N}} = \{0, 1, 1, 2, 3, 5, 8, \ldots\} \).
- Characteristic polynomial is \(x^2 - x - 1 \) whose roots are \(\frac{1 \pm \sqrt{5}}{2} \).

\[
a_n = c_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + c_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n
\]

\[
a_0 = 0
\]
\[
a_1 = 1
\]

\[
a_n = \frac{\sqrt{5}}{5} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{\sqrt{5}}{5} \left(\frac{1 - \sqrt{5}}{2} \right)^n
\]

- \(a_n \) is a poly-exp sum of order 2 (2 + 0 + 0).
Connections to Linear Recurrences

- Given the orbit set problem \((\Phi, \vec{q}, C)\), there is a linear recurrence \(\{a_n\}_{n \in \mathbb{N}}\) so that \(a_n = 0 \iff \Phi^n(\vec{q}) \in C\).

- If \(C\) has degree \(d\) then the linear recurrence will have order at most \(\delta + 1\).

- Uniform bounds already exist for the number of zeroes in a linear recurrences of order \(N\) (Schlickewei, ranging from triply exponential in \(N\) to the most recent, doubly exponential result, about 20 years).
Connections to Linear Recurrences

- Given the orbit set problem \((\Phi, \vec{q}, C)\), there is a linear recurrence \(\{a_n\}_{n \in \mathbb{N}}\) so that \(a_n = 0 \iff \Phi^n(\vec{q}) \in C\).

- If \(C\) has degree \(d\) then the linear recurrence will have order at most \(\delta + 1\).

- Uniform bounds already exist for the number of zeroes in a linear recurrences of order \(N\) (Schlickewei, ranging from triply exponential in \(N\) to the most recent, doubly exponential result, about 20 years).
Connections to Linear Recurrences

- Given the orbit set problem \((\Phi, \vec{q}, C)\), there is a linear recurrence \(\{a_n\}_{n \in \mathbb{N}}\) so that \(a_n = 0 \iff \Phi^n(\vec{q}) \in C\).
- If \(C\) has degree \(d\) then the linear recurrence will have order at most \(\delta + 1\).
- Uniform bounds already exist for the number of zeroes in a linear recurrences of order \(N\) (Schlickewei, ranging from triply exponential in \(N\) to the most recent, doubly exponential result, about 20 years).
Skolem-Mahler-Lech Theorem

Theorem (Skolem-Mahler-Lech 1933-1935-1953)

If \(\{a_n\}_{n \in \mathbb{N}} \) is a recurrence sequence of complex numbers, then the set of all integers \(n \) such that \(a_n = 0 \) is the union of a finite number of arithmetic sequences.
An arithmetic sequence of natural numbers is a sequence, \(\{a_n\}_{n \in \mathbb{N}} \), of the form
\[
a_n := s + nt
\]
for some fixed \(s, t \in \mathbb{N} \) and with \(n \in \mathbb{N} \).

- If \(t = 0 \), then the arithmetic sequence is a singleton.
- If \(t \neq 0 \), then the arithmetic sequence is said to be a full arithmetic sequence (contains infinitely many numbers).
- A finite union of arithmetic sequences is a finite set (possibly empty) union a finite number (possibly 0) of full arithmetic sequences.
Arithmetic Sequences

- An arithmetic sequence of natural numbers is a sequence, \(\{a_n\}_{n \in \mathbb{N}} \), of the form \(a_n := s + nt \) for some fixed \(s, t \in \mathbb{N} \) and with \(n \in \mathbb{N} \).
- If \(t = 0 \), then the arithmetic sequence is a singleton.
- If \(t \neq 0 \), then the arithmetic sequence is said to be a full arithmetic sequence (contains infinitely many numbers).
- A finite union of arithmetic sequences is a finite set (possibly empty) union a finite number (possibly 0) of full arithmetic sequences.
Arithmetic Sequences

- An arithmetic sequence of natural numbers is a sequence, \(\{a_n\}_{n \in \mathbb{N}} \), of the form
 \[
 a_n := s + nt
 \]
 for some fixed \(s, t \in \mathbb{N} \) and with \(n \in \mathbb{N} \).
- If \(t = 0 \), then the arithmetic sequence is a singleton.
- If \(t \neq 0 \), then the arithmetic sequence is said to be a full arithmetic sequence (contains infinitely many numbers).
- A finite union of arithmetic sequences is a finite set (possibly empty) union a finite number (possibly 0) of full arithmetic sequences.
Arithmetic Sequences

- An arithmetic sequence of natural numbers is a sequence, \(\{a_n\}_{n \in \mathbb{N}} \), of the form
 \[
 a_n := s + nt
 \]
 for some fixed \(s, t \in \mathbb{N} \) and with \(n \in \mathbb{N} \).
- If \(t = 0 \), then the arithmetic sequence is a singleton.
- If \(t \neq 0 \), then the arithmetic sequence is said to be a full arithmetic sequence (contains infinitely many numbers).
- A finite union of arithmetic sequences is a finite set (possibly empty) union a finite number (possibly 0) of full arithmetic sequences.
Ternary Recurrence Theorems

Theorem (Beukers 1991)

If \(\{a_n\}_{n \in \mathbb{N}} \) is a non-degenerate ternary recurrence sequence of rational numbers, then there are at most 6 integers \(n \) such that \(a_n = 0 \).

Theorem (Beukers 1996)

If \(\{a_n\}_{n \in \mathbb{N}} \) is a non-degenerate ternary recurrence sequence of complex numbers, then there are at most 61 integers \(n \) such that \(a_n = 0 \).
Introduction
Orbit Sets Induced by a Linear Map with Eigenvalues in \(\mathbb{R} \)
Orbit Sets Induced by a Linear Map with Eigenvalues in \(\mathbb{Q}_p \)
Conclusion

Ternary Recurrence Theorems

Theorem (Beukers 1991)
If \(\{a_n\}_{n \in \mathbb{N}} \) is a non-degenerate ternary recurrence sequence of rational numbers, then there are at most 6 integers \(n \) such that \(a_n = 0 \).

Theorem (Beukers 1996)
If \(\{a_n\}_{n \in \mathbb{N}} \) is a non-degenerate ternary recurrence sequence of complex numbers, then there are at most 61 integers \(n \) such that \(a_n = 0 \).
Theorem (Schlickewei 2000)

If \(\{a_n\}_{n \in \mathbb{N}} \) is a non-degenerate \(N \)-ary recurrence sequence of rational numbers, then there are at most \((2N)^{35N^3} \) integers \(n \) such that \(a_n = 0 \).

Theorem (D. 2010)

For \(N > 1 \), if \(\{a_n\}_{n \in \mathbb{N}} \) is a non-degenerate \(N \)-ary recurrence sequence of real numbers whose characteristic roots are all real, then there are at most \(2N - 3 \) integers \(n \) such that \(a_n = 0 \).
\textbf{N-ary Recurrence Theorems}

\textbf{Theorem (Schlickewei 2000)}

If \(\{a_n\}_{n \in \mathbb{N}} \) is a non-degenerate \(N \)-ary recurrence sequence of rational numbers, then there are at most \((2N)^{35N^3}\) integers \(n \) such that \(a_n = 0 \).

\textbf{Theorem (D. 2010)}

For \(N > 1 \), if \(\{a_n\}_{n \in \mathbb{N}} \) is a non-degenerate \(N \)-ary recurrence sequence of real numbers whose characteristic roots are all real, then there are at most \(2N - 3 \) integers \(n \) such that \(a_n = 0 \).
Orbit Sets and Varieties

Analyze \(\{ n \in \mathbb{N} \mid \Phi^n(\vec{q}) \in W \} \) where \(\Phi : V \to V \), \(\vec{q} \in V \), and \(W \) is a subvariety of \(V := \bigcap_{i=1}^{k} Z(P_i(\vec{x})) \).

Theorem (Bell 2006)

Let \(V \) be an affine variety over a field \(k \) of characteristic 0. Let \(\vec{q} \) be a point in \(V \) and \(\Phi \) an automorphism of \(V \). If \(W \) is a subvariety of \(V \) then the set \(\{ n \in \mathbb{N} \mid \Phi^n(\vec{q}) \in W \} \) is a finite union of arithmetic sequences.
Orbit Sets and Varieties

Analyze $\{n \in \mathbb{N} \mid \Phi^n(\vec{q}) \in W\}$ where $\Phi : V \to V$, $\vec{q} \in V$, and W is a subvariety of $V := \bigcap_{i=1}^{k} Z(P_i(\vec{x}))$.

Theorem (Bell 2006)

Let V be an affine variety over a field k of characteristic 0. Let \vec{q} be a point in V and Φ an automorphism of V. If W is a subvariety of V then the set $\{n \in \mathbb{N} \mid \Phi^n(\vec{q}) \in W\}$ is a finite union of arithmetic sequences.
Orbit Sets and Varieties

Theorem (Bell, Ghioca, Tucker 2009)

Let $\Phi : V \rightarrow V$ be an étale endomorphism of any quasiprojective variety defined over \mathbb{C}. Then for any subvariety W of V, and for any point $\vec{q} \in V$ the set $\{n \in \mathbb{N} \mid \Phi^n(\vec{q}) \in W\}$ is a finite union of arithmetic sequences.

Theorem (D. 2010)

If the eigenvalues of a linear map $\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ are real, $\vec{q} \in \mathbb{R}^2$, $C \subset \mathbb{R}^2$ is a curve of degree d, and $|\text{Orb}_\Phi(\vec{q}) \cap C|$ is finite, then $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq d^2 + 3d - 1$.
Theorem (Bell, Ghioca, Tucker 2009)

Let $\Phi : V \to V$ be an étale endomorphism of any quasiprojective variety defined over \mathbb{C}. Then for any subvariety W of V, and for any point $\vec{q} \in V$ the set $\{ n \in \mathbb{N} \mid \Phi^n(\vec{q}) \in W \}$ is a finite union of arithmetic sequences.

Theorem (D. 2010)

If the eigenvalues of a linear map $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ are real, $\vec{q} \in \mathbb{R}^2$, $C \subset \mathbb{R}^2$ is a curve of degree d, and $|\text{Orb}_\Phi(\vec{q}) \cap C|$ is finite, then $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq d^2 + 3d - 1$.

Orbit Sets and Varieties
Orbit Sets and Varieties

Theorem (Bell, Ghioca, Tucker 2009)

Let $\Phi : V \to V$ be an étale endomorphism of any quasiprojective variety defined over \mathbb{C}. Then for any subvariety W of V, and for any point $\vec{q} \in V$ the set $\{n \in \mathbb{N} \mid \Phi^n(\vec{q}) \in W\}$ is a finite union of arithmetic sequences.

Theorem (D. 2010)

If the eigenvalues of a linear map $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ are real, $\vec{q} \in \mathbb{R}^2$, $C \subset \mathbb{R}^2$ is a curve of degree d, and $|\text{Orb}_\Phi(\vec{q}) \cap C|$ is finite, then $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq d^2 + 3d - 1$.

§
Suppose $\vec{q} \in \mathbb{R}^2$, $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map with real eigenvalues, and C is a curve of degree d.

By change of basis, we may assume that $\Phi(x, y) = (\lambda_1 x, \lambda_2 y)$ or $\Phi(x, y) = (\lambda x + y, \lambda y)$ (using the Jordan form for the matrix associated to Φ).

It will be shown that if $|\text{Orb}_\Phi(\vec{q}) \cap C|$ is finite then $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq d^2 + 3d - 1$.

Suppose $\vec{q} \in \mathbb{R}^2$, $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map with real eigenvalues, and C is a curve of degree d.

By change of basis, we may assume that $\Phi(x, y) = (\lambda_1 x, \lambda_2 y)$ or $\Phi(x, y) = (\lambda x + y, \lambda y)$ (using the Jordan form for the matrix associated to Φ).

It will be shown that if $|\text{Orb}_{\Phi}(\vec{q}) \cap C|$ is finite then $|\text{Orb}_{\Phi}(\vec{q}) \cap C| \leq d^2 + 3d - 1$.
Suppose $\vec{q} \in \mathbb{R}^2$, $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map with real eigenvalues, and C is a curve of degree d.

By change of basis, we may assume that $\Phi(x, y) = (\lambda_1 x, \lambda_2 y)$ or $\Phi(x, y) = (\lambda x + y, \lambda y)$ (using the Jordan form for the matrix associated to Φ).

It will be shown that if $|\text{Orb}_\Phi(\vec{q}) \cap C|$ is finite then $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq d^2 + 3d - 1$.
Main Lemma

Lemma (D. 2010)

If \(E(x) := \sum_{i=1}^{m} (P_i(x)b_i^x) \) is a poly-exp sum over \(\mathbb{R} \) with \(\text{ord}(E) := N \geq 2 \) then the number of integer zeroes of \(E(x) \) is at most \(2N - 3 \).

When all \(b_i \) are positive, then the number of integer zeroes of \(E(x) \) is at most \(N - 1 \).

When there are at least two \(b_i \) of opposite sign, then the number of integer zeroes of \(E(x) \) is at most \(2(N - 1) \). By an inductive argument, we may lower the bound by 1, so that there are at most \(2(N - 1) - 1 = 2N - 3 \) integer zeroes.
Main Lemma

Lemma (D. 2010)

If \(E(x) := \sum_{i=1}^{m} (P_i(x)b_i^x) \) is a poly-exp sum over \(\mathbb{R} \) with \(\text{ord}(E) := N \geq 2 \) then the number of integer zeroes of \(E(x) \) is at most \(2N - 3 \).

When all \(b_i \) are positive, then the number of integer zeroes of \(E(x) \) is at most \(N - 1 \).

When there are at least two \(b_i \) of opposite sign, then the number of integer zeroes of \(E(x) \) is at most \(2(N - 1) \). By an inductive argument, we may lower the bound by 1, so that there are at most \(2(N - 1) - 1 = 2N - 3 \) integer zeroes.
Main Lemma

Lemma (D. 2010)

If \(E(x) := \sum_{i=1}^{m} (P_i(x)b_i^x) \) is a poly-exp sum over \(\mathbb{R} \) with \(\text{ord}(E) := N \geq 2 \) then the number of integer zeroes of \(E(x) \) is at most \(2N - 3 \).

When all \(b_i \) are positive, then the number of integer zeroes of \(E(x) \) is at most \(N - 1 \).

When there are at least two \(b_i \) of opposite sign, then the number of integer zeroes of \(E(x) \) is at most \(2(N - 1) \). By an inductive argument, we may lower the bound by 1, so that there are at most \(2(N - 1) - 1 = 2N - 3 \) integer zeroes.
Main Lemma

Lemma (D. 2010)

If $E(x) := \sum_{i=1}^{m} (P_i(x)b_i^x)$ is a poly-exp sum over \mathbb{R} with \(\text{ord}(E) := N \geq 2 \) then the number of integer zeroes of $E(x)$ is at most $2N - 3$.

When all b_i are positive, then the number of integer zeroes of $E(x)$ is at most $N - 1$.

When there are at least two b_i of opposite sign, then the number of integer zeroes of $E(x)$ is at most $2(N - 1)$. By an inductive argument, we may lower the bound by 1, so that there are at most $2(N - 1) - 1 = 2N - 3$ integer zeroes.
Lemma (D. 2010)

There at most \(2 \deg(P(x)) + 1\) real solutions to either (1) or (2), where \(a, b, c, d \in \mathbb{R}^+\) with \(P(x)\) and \(Q(x)\) monic polynomials of the same degree.

\[
P(x)a^x + cb^x = 0 \quad (1)
\]
\[
Q(x)a^x - db^x = 0 \quad (2)
\]

This lemma is a generalization of the fact that there is at most one solution to either \(2^x + 3^x = 0\) or \(2^x - 3^x = 0\).
Savings of One Lemma

Lemma (D. 2010)

There at most $2 \deg(P(x)) + 1$ real solutions to either (1) or (2), where $a, b, c, d \in \mathbb{R}^+$ with $P(x)$ and $Q(x)$ monic polynomials of the same degree.

\[P(x)a^x + cb^x = 0 \quad (1) \]
\[Q(x)a^x - db^x = 0 \quad (2) \]

This lemma is a generalization of the fact that there is at most one solution to either $2^x + 3^x = 0$ or $2^x - 3^x = 0$.
Rolle’s Theorem

Theorem (Rolle 1691)

For a differentiable function $f : \mathbb{R} \to \mathbb{R}$ and any non-negative integer r, $\#Z(f(x)) \leq r + \#Z(f^{(r)}(x))$.

For a real, differentiable poly-exp sum, Rolle’s Theorem provides an upper bound on the number of real zeroes.
Rolle’s Theorem

Theorem (Rolle 1691)

For a differentiable function $f : \mathbb{R} \to \mathbb{R}$ and any non-negative integer r, $\# Z(f(x)) \leq r + \# Z(f^{(r)}(x))$.

For a real, differentiable poly-exp sum, Rolle’s Theorem provides an upper bound on the number of real zeroes.
Main Lemma: Example

Let $E(x) := (x^2)3^x + (-2)^x + (-5x)7^x$. Then $E(x)$ has order $N = 6$ ($3 + 2 + 0 + 1$, number of exponential terms plus the polynomial degree sum). Since there is one positive exponential base value and one negative, we parameterize $E(x)$ as

$$E_1(x) := (2x)^23^{2x} + (-2)^{2x} - 5(2x)7^{2x} = 4x^29^x + 4^x - 10x49^x$$

$$E_2(x) := (2x + 1)^23^{2x+1} + (-2)^{2x+1} - 5(2x + 1)7^{2x+1}$$

$$= 3(4x^2 + 4x + 1)9^x - (2)4^x - 7(10x + 5)49^x.$$

*Note: $E_1(n) = E(2n)$ and $E_2(n) = E(2n + 1)$ for all $n \in \mathbb{Z}$.***
Main Lemma: Example

Let $E(x) := (x^2)3^x + (-2)^x + (-5x)7^x$. Then $E(x)$ has order $N = 6$ ($3 + 2 + 0 + 1$, number of exponential terms plus the polynomial degree sum). Since there is one positive exponential base value and one negative, we parameterize $E(x)$ as

$$E_1(x) := (2x)^23^{2x} + (-2)^x - 5(2x)7^{2x} = 4x^29^x + 4^x - 10x49^x$$

$$E_2(x) := (2x + 1)^23^{2x+1} + (-2)^{2x+1} - 5(2x + 1)7^{2x+1} = 3(4x^2 + 4x + 1)9^x - (2)4^x - 7(10x + 5)49^x.$$

Note: $E_1(n) = E(2n)$ and $E_2(n) = E(2n + 1)$ for all $n \in \mathbb{Z}$.
Main Lemma: Example

To find an upper bound on the number of zeroes of $E_i(x)$, we repeat the steps of

1. Dividing by an exponential term ($+0$).
2. Taking r derivatives ($+r$).

until there are exactly two terms left in the poly-exp sums. Then we algebraically manipulate these sums so that the Savings of One Lemma can be applied.
Main Lemma: Example

To find an upper bound on the number of zeroes of $E_i(x)$, we repeat the steps of

1. Dividing by an exponential term (+0).
2. Taking r derivatives (+r).

until there are exactly two terms left in the poly-exp sums. Then we algebraically manipulate these sums so that the Savings of One Lemma can be applied.
Main Lemma: Example

To find an upper bound on the number of zeroes of $E_i(x)$, we repeat the steps of

1. Dividing by an exponential term (± 0).
2. Taking r derivatives ($\pm r$).

until there are exactly two terms left in the poly-exp sums. Then we algebraically manipulate these sums so that the Savings of One Lemma can be applied.
Main Lemma: Example

By definition, we have

$$\# Z(E_1(x)) = \# Z(4x^2 9^x + 4^x - 10x49^x)$$
$$\# Z(E_2(x)) = \# Z(3(4x^2 + 4x + 1)9^x - 24^x - 7(10x + 5)49^x) .$$

Dividing by an exponential term does not change the number of zeroes,

$$\# Z(E_1(x)) = \# Z(4x^2 (9/49)^x + (4/49)^x - 10x)$$
$$\# Z(E_2(x)) = \# Z(3(4x^2 + 4x + 1) (9/49)^x - 2 (4/49)^x - 7(10x + 5)) .$$
Main Lemma: Example

By definition, we have

\[
\#Z(E_1(x)) = \#Z \left(4x^2 9^x + 4^x - 10x49^x \right)
\]
\[
\#Z(E_2(x)) = \#Z \left(3(4x^2 + 4x + 1)9^x - 24^x - 7(10x + 5)49^x \right).
\]

Dividing by an exponential term does not change the number of zeroes,

\[
\#Z(E_1(x)) = \#Z \left(4x^2 \left(\frac{9}{49} \right)^x + \left(\frac{4}{49} \right)^x - 10x \right)
\]
\[
\#Z(E_2(x)) = \#Z \left(3(4x^2 + 4x + 1) \left(\frac{9}{49} \right)^x - 2 \left(\frac{4}{49} \right)^x - 7(10x + 5) \right).
\]
Main Lemma: Example

After taking two derivatives and applying Rolle’s Theorem, we have

\[
\#Z (E_1(x)) \leq 2 + \#Z (Q(x) (9/49)^x + c_2 (4/49)^x) \\
\#Z (E_2(x)) \leq 2 + \#Z (R(x) (9/49)^x - 2c_2 (4/49)^x).
\]

Rewriting these sums so that the Savings of One Lemma can be applied,

\[
\#Z (E_1(x)) \leq 2 + \#Z \left(\frac{1}{c_1} Q(x) (9/49)^x + \frac{c_2}{c_1} (4/49)^x \right) \\
\#Z (E_2(x)) \leq 2 + \#Z \left(\frac{1}{3c_1} R(x) (9/49)^x - \frac{2c_2}{3c_1} (4/49)^x \right).
\]
Main Lemma: Example

After taking two derivatives and applying Rolle’s Theorem, we have

\[
\#Z(E_1(x)) \leq 2 + \#Z(Q(x) (9/49)^x + c_2 (4/49)^x) \\
\#Z(E_2(x)) \leq 2 + \#Z(R(x) (9/49)^x - 2c_2 (4/49)^x).
\]

Rewriting these sums so that the Savings of One Lemma can be applied,

\[
\#Z(E_1(x)) \leq 2 + \#Z\left(\frac{1}{c_1} Q(x) (9/49)^x + \frac{c_2}{c_1} (4/49)^x\right) \\
\#Z(E_2(x)) \leq 2 + \#Z\left(\frac{1}{3c_1} R(x) (9/49)^x - \frac{2c_2}{3c_1} (4/49)^x\right).
\]
Main Lemma: Example

- Applying the Savings of One Lemma where the degree of the monic polynomials is 2, the number of real zeroes to either the first or second poly-exp sum is $2(2) + 1 = 5$.
- Finally, $\#Z(E_1(x)) + \#Z(E_2(x)) \leq (2 + 2) + 5 = 9$.
- So there are at most 9 real zeroes to either $E_1(x)$ or $E_2(x)$. Therefore, $E(x)$, a poly-exp sum of order 6, has at most 9 integer zeroes with $9 = 2(6) - 3$ (the number expected based the main lemma).
Main Lemma: Example

- Applying the Savings of One Lemma where the degree of the monic polynomials is 2, the number of real zeroes to either the first or second poly-exp sum is $2(2) + 1 = 5$.
- Finally, $\#Z(E_1(x)) + \#Z(E_2(x)) \leq (2 + 2) + 5 = 9$.
- So there are at most 9 real zeroes to either $E_1(x)$ or $E_2(x)$. Therefore, $E(x)$, a poly-exp sum of order 6, has at most 9 integer zeroes with $9 = 2(6) - 3$ (the number expected based the main lemma).
Main Lemma: Example

- Applying the Savings of One Lemma where the degree of the monic polynomials is 2, the number of real zeroes to either the first or second poly-exp sum is $2(2) + 1 = 5$.
- Finally, $\#Z(E_1(x)) + \#Z(E_2(x)) \leq (2 + 2) + 5 = 9$.
- So there are at most 9 real zeroes to either $E_1(x)$ or $E_2(x)$. Therefore, $E(x)$, a poly-exp sum of order 6, has at most 9 integer zeroes with $9 = 2(6) - 3$ (the number expected based the main lemma).
D. Real Eigenvalues Theorem

Theorem (D. 2010)

If the eigenvalues of a linear map $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ are real, $\vec{q} \in \mathbb{R}^2$, $C \subset \mathbb{R}^2$ is a curve of degree d, and $|\text{Orb}_\Phi(\vec{q}) \cap C|$ is finite, then $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq d^2 + 3d - 1$.
Suppose $\Phi(x, y) := (\lambda_1 x, \lambda_2 y)$.

Let C be a curve of degree d defined over \mathbb{R} with

$$C := \mathbb{Z} \left(\sum_{i+j \leq d, i,j \geq 0} a_{i,j} x^i y^j \right)$$

for some $a_{i,j} \in \mathbb{R}$ and $\vec{q} := (q_1, q_2) \in \mathbb{R}^2$.

Then, $\Phi^n(\vec{q}) = (q_1 \lambda_1^n, q_2 \lambda_2^n)$.

The points in the orbit set $\text{Orb}_\Phi(\vec{q})$ are $P_n := (q_1 \lambda_1^n, q_2 \lambda_2^n)$ for $n \geq 0$.
Suppose $\Phi(x, y) := (\lambda_1 x, \lambda_2 y)$.
Let C be a curve of degree d defined over \mathbb{R} with
\[
C := \sum_{i,j \geq 0, i+j \leq d} a_{i,j} x^i y^j
\]
for some $a_{i,j} \in \mathbb{R}$ and $\vec{q} := (q_1, q_2) \in \mathbb{R}^2$.
Then, $\Phi^n(\vec{q}) = (q_1 \lambda_1^n, q_2 \lambda_2^n)$.
The points in the orbit set $\text{Orb}_{\Phi}(\vec{q})$ are $P_n := (q_1 \lambda_1^n, q_2 \lambda_2^n)$ for $n \geq 0$.
Suppose \(\Phi(x, y) := (\lambda_1 x, \lambda_2 y) \).

Let \(C \) be a curve of degree \(d \) defined over \(\mathbb{R} \) with

\[
C := \mathbb{Z} \left(\sum_{\substack{0 \leq i, j \leq d}} a_{i,j} x^i y^j \right)
\]
for some \(a_{i,j} \in \mathbb{R} \) and \(\vec{q} := (q_1, q_2) \in \mathbb{R}^2 \).

Then, \(\Phi^n(\vec{q}) = (q_1 \lambda_1^n, q_2 \lambda_2^n) \).

The points in the orbit set \(\text{Orb}_\Phi(\vec{q}) \) are \(P_n := (q_1 \lambda_1^n, q_2 \lambda_2^n) \) for \(n \geq 0 \).
Suppose $\Phi(x, y) := (\lambda_1 x, \lambda_2 y)$.

Let C be a curve of degree d defined over \mathbb{R} with

$$C := Z \left(\sum_{i+j \leq d} a_{i,j} x^i y^j \right)$$

for some $a_{i,j} \in \mathbb{R}$ and $\vec{q} := (q_1, q_2) \in \mathbb{R}^2$.

Then, $\Phi^n(\vec{q}) = (q_1 \lambda_1^n, q_2 \lambda_2^n)$.

The points in the orbit set $\text{Orb}_\Phi(\vec{q})$ are $P_n := (q_1 \lambda_1^n, q_2 \lambda_2^n)$ for $n \geq 0$.
If $P_n \in C$ then

\[0 = \sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} (q_1 \lambda_1^n)^i (q_2 \lambda_2^n)^j = \sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} q_1^i q_2^j (\lambda_1^n \lambda_2^n)^n = \sum_{i+j \leq d \atop i,j \geq 0} b_{i,j} c_{i,j}^n := E(n) \]

where $b_{i,j} := a_{i,j} q_1^i q_2^j$ and $c_{i,j} := \lambda_1^i \lambda_2^j$.

Since $\text{ord}(E) \leq \frac{(d+1)(d+2)}{2}$ by counting the number of distinct exponential terms and each polynomial coefficient is degree zero, we have at most $2\text{ord}(E) - 3 = d^2 + 3d - 1$ integer solutions to the poly-exp equation. Therefore, $|\text{Orb}_\Phi(\overline{q}) \cap C| \leq d^2 + 3d - 1$.
If $P_n \in C$ then

$$0 = \sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} (q_1^n \lambda_1^i)(q_2^n \lambda_2^j) = \sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} q_1^i q_2^j (\lambda_1^i \lambda_2^j)^n = \sum_{i+j \leq d \atop i,j \geq 0} b_{i,j} c_{i,j}^n := E(n)$$

where $b_{i,j} := a_{i,j} q_1^i q_2^j$ and $c_{i,j} := \lambda_1^i \lambda_2^j$.

Since $\text{ord}(E) \leq \frac{(d+1)(d+2)}{2}$ by counting the number of distinct exponential terms and each polynomial coefficient is degree zero, we have at most $2\text{ord}(E) - 3 = d^2 + 3d - 1$ integer solutions to the poly-exp equation. Therefore, $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq d^2 + 3d - 1$.
D. Real Theorem: Proof Part 1

If \(P_n \in C \) then

\[
0 = \sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} (q_1 \lambda_1^n)^i (q_2 \lambda_2^n)^j = \sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} q_1^i q_2^j (\lambda_1^i \lambda_2^j)^n = \sum_{i+j \leq d \atop i,j \geq 0} b_{i,j} c_{i,j}^n := E(n)
\]

where \(b_{i,j} := a_{i,j} q_1^i q_2^j \) and \(c_{i,j} := \lambda_1^i \lambda_2^j \).

Since \(\text{ord}(E) \leq \frac{(d+1)(d+2)}{2} \) by counting the number of distinct exponential terms and each polynomial coefficient is degree zero, we have at most \(2\text{ord}(E) - 3 = d^2 + 3d - 1 \) integer solutions to the poly-exp equation. Therefore, \(|\text{Orb}_\Phi(\vec{\eta}) \cap C| \leq d^2 + 3d - 1 \).
D. Real Theorem: Proof Part 2

Suppose \(\Phi(x, y) := (\lambda x + y, \lambda y) \).

Let \(C \) be a curve of degree \(d \) defined over \(\mathbb{R} \) with

\[
C := Z \left(\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i,j} x^i y^j \right)
\]

for some \(a_{i,j} \in \mathbb{R} \) and \(\vec{q} := (q_1, q_2) \in \mathbb{R}^2 \).

Then, \(\Phi^n(\vec{q}) = (q_1 \lambda^n + nq_2 \lambda^{n-1}, q_2 \lambda^n) \).

The points in the orbit set \(\text{Orb}_\Phi(\vec{q}) \) are \(P_n := (q_1 \lambda^n + nq_2 \lambda^{n-1}, q_2 \lambda^n) \) for \(n \geq 0 \).
Suppose $\Phi(x, y) := (\lambda x + y, \lambda y)$. Let C be a curve of degree d defined over \mathbb{R} with

$$C := Z \left(\sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} x^i y^j \right)$$

for some $a_{i,j} \in \mathbb{R}$ and $\vec{q} := (q_1, q_2) \in \mathbb{R}^2$.

Then, $\Phi^n(\vec{q}) = (q_1 \lambda^n + nq_2 \lambda^{n-1}, q_2 \lambda^n)$.

The points in the orbit set $\text{Orb}_\Phi(\vec{q})$ are $P_n := (q_1 \lambda^n + nq_2 \lambda^{n-1}, q_2 \lambda^n)$ for $n \geq 0$.

J. Dreibeibis Bounding Intersections of Orbit Sets with Curves
Suppose $\Phi(x, y) := (\lambda x + y, \lambda y)$. Let C be a curve of degree d defined over \mathbb{R} with

$$C := \mathbb{Z} \left(\sum_{\substack{i+j \leq d \\ i,j \geq 0}} a_{i,j} x^i y^j \right)$$

for some $a_{i,j} \in \mathbb{R}$ and $\vec{q} := (q_1, q_2) \in \mathbb{R}^2$. Then, $\Phi^n(\vec{q}) = (q_1 \lambda^n + nq_2 \lambda^{n-1}, q_2 \lambda^n)$. The points in the orbit set $\text{Orb}_\Phi(\vec{q})$ are $P_n := (q_1 \lambda^n + nq_2 \lambda^{n-1}, q_2 \lambda^n)$ for $n \geq 0$.
Suppose $\Phi(x, y) := (\lambda x + y, \lambda y)$. Let C be a curve of degree d defined over \mathbb{R} with

$$C := \mathbb{Z} \left(\sum_{\substack{i+j \leq d \\ i,j \geq 0}} a_{i,j} x^i y^j \right)$$

for some $a_{i,j} \in \mathbb{R}$ and $\vec{q} := (q_1, q_2) \in \mathbb{R}^2$. Then, $\Phi^n(\vec{q}) = (q_1 \lambda^n + nq_2 \lambda^{n-1}, q_2 \lambda^n)$. The points in the orbit set $\text{Orb}_\Phi(\vec{q})$ are $P_n := (q_1 \lambda^n + nq_2 \lambda^{n-1}, q_2 \lambda^n)$ for $n \geq 0$.

D. Real Theorem: Proof Part 2

If \(P_n \in C \) then

\[
0 = \sum_{i+j \leq d, \ i,j \geq 0} a_{i,j}(q_1 \lambda^n + nq_2 \lambda^{n-1})^i(q_2 \lambda^n)^j = \sum_{i+j \leq d, \ i,j \geq 0} a_{i,j}(q_1 \lambda^n + \frac{q_2}{\lambda} n\lambda^n)^i(q_2 \lambda^n)^j
\]

\[
= \sum_{i+j \leq d, \ i,j \geq 0} a_{i,j}q_2^i(q_1 + \frac{q_2}{\lambda} n)^i \lambda^{ni} \lambda^{nj} = \sum_{i+j \leq d, \ i,j \geq 0} a_{i,j}q_2^i(q_1 + \frac{q_2}{\lambda} n)^i (\lambda^{i+j})^n
\]

\[
= \sum_{k=0}^{d} \sum_{i=0}^{k} a_{i,k-i}q_2^{k-i}(q_1 + \frac{q_2}{\lambda} n)^i (\lambda^k)^n \:= \sum_{k=0}^{d} P_k(n)(\lambda^k)^n := E(n)
\]

where \(P_k \) is a polynomial in \(n \) of at most degree \(k \).
If $P_n \in C$ then

\[
0 = \sum_{i+j \leq d, i,j \geq 0} a_{i,j} (q_1 \lambda^n + n q_2 \lambda^{n-1})^i (q_2 \lambda^n)^j = \sum_{i+j \leq d, i,j \geq 0} a_{i,j} (q_1 \lambda^n + \frac{q_2}{\lambda} n \lambda^n)^i (q_2 \lambda^n)^j
\]

\[
= \sum_{i+j \leq d, i,j \geq 0} a_{i,j} q_2^i (q_1 + \frac{q_2}{\lambda} n)^i \lambda^{ni} \lambda^{nj} = \sum_{i+j \leq d, i,j \geq 0} a_{i,j} q_2^j (q_1 + \frac{q_2}{\lambda} n)^i (\lambda^{i+j})^n
\]

\[
= \sum_{k=0}^{d} \sum_{i=0}^{k} a_{i,k-i} q_2^{k-i} (q_1 + \frac{q_2}{\lambda} n)^i (\lambda^k)^n := \sum_{k=0}^{d} P_k(n)(\lambda^k)^n := E(n)
\]

where P_k is a polynomial in n of at most degree k.
D. Real Theorem: Proof Part 2

If \(P_n \in C \) then

\[
0 = \sum_{i+j \leq d} a_{i,j}(q_1 \lambda^n + nq_2 \lambda^{n-1})^i(q_2 \lambda^n)^j = \sum_{i+j \leq d} a_{i,j}(q_1 \lambda^n + \frac{q_2}{\lambda} n\lambda^n)^i(q_2 \lambda^n)^j
\]

\[
= \sum_{i+j \leq d} a_{i,j}q_2^i(q_1 + \frac{q_2}{\lambda} n)^i \lambda^i \lambda^{nj} = \sum_{i+j \leq d} a_{i,j}q_2^i(q_1 + \frac{q_2}{\lambda} n)^i (\lambda^{i+j})^n
\]

\[
= \sum_{k=0}^{d} \sum_{i=0}^{k} a_{i,k-i}q_2^{k-i}(q_1 + \frac{q_2}{\lambda} n)^i (\lambda^k)^n := \sum_{k=0}^{d} P_k(n)(\lambda^k)^n := E(n)
\]

where \(P_k \) is a polynomial in \(n \) of at most degree \(k \).
D. Real Theorem: Proof Part 2

\(E(n) \) is a poly-exp sum of order at most

\[
N \leq d + 1 + \sum_{k=0}^{d} k = d + 1 + \frac{d(d + 1)}{2} = \frac{d^2 + 3d + 2}{2}.
\]

Therefore, there are at most \(2N - 3 = d^2 + 3d - 1 \) integer solutions to \(E(n) = 0 \). Consequently, \(\left| \text{Orb}_\Phi(\vec{q}) \cap C \right| \leq d^2 + 3d - 1. \]
D. Real Theorem: Proof Part 2

\[E(n) \text{ is a poly-exp sum of order at most } \]

\[N \leq d + 1 + \sum_{k=0}^{d} k = d + 1 + \frac{d(d + 1)}{2} = \frac{d^2 + 3d + 2}{2}. \]

Therefore, there are at most \(2N - 3 = d^2 + 3d - 1 \) integer solutions to \(E(n) = 0 \). Consequently, \(|\text{Orb}_\Phi(\vec{q}) \cap C| \leq d^2 + 3d - 1\). \(\square \)
D. Real Theorem: Proof Part 2

$E(n)$ is a poly-exp sum of order at most

$$N \leq d + 1 + \sum_{k=0}^{d} k = d + 1 + \frac{d(d + 1)}{2} = \frac{d^2 + 3d + 2}{2}.$$

Therefore, there are at most $2N - 3 = d^2 + 3d - 1$ integer solutions to $E(n) = 0$. Consequently, $|\text{Orb}_\Phi(\bar{q}) \cap C| \leq d^2 + 3d - 1$. \qed

§
The p-adic ordinal

- For an integer s and a prime number p, we define $\text{ord}_p(s) := k$ where k is the largest power of p dividing s. For example,

 \[
 \text{ord}_p(p^2) = 2
 \]

 \[
 \text{ord}_5(4 \cdot 5^3 + 5^5 + 3 \cdot 5^6) = \text{ord}_5(5^3 \cdot 404) = 3
 \]

 \[
 \text{ord}_7(19) = 0.
 \]

- Since an element $q \in \mathbb{Q}$ may be written as $q = s_1/s_2$ for some $s_i \in \mathbb{Z}$, we may extend the function $\text{ord}_p(\cdot)$ to \mathbb{Q} by

 \[
 \text{ord}_p(q) := \text{ord}_p(s_1) - \text{ord}_p(s_2).
 \]
The p-adic ordinal

For an integer s and a prime number p, we define $\text{ord}_p(s) := k$ where k is the largest power of p dividing s. For example,

$$\text{ord}_p(p^2) = 2$$

$$\text{ord}_5(4 \cdot 5^3 + 5^5 + 3 \cdot 5^6) = \text{ord}_5(5^3 \cdot 404) = 3$$

$$\text{ord}_7(19) = 0.$$

Since an element $q \in \mathbb{Q}$ may be written as $q = s_1/s_2$ for some $s_i \in \mathbb{Z}$, we may extend the function $\text{ord}_p(\cdot)$ to \mathbb{Q} by

$$\text{ord}_p(q) := \text{ord}_p(s_1) - \text{ord}_p(s_2).$$
Another useful function is the p-adic absolute value $|\cdot|_p : \mathbb{Q} \to \mathbb{Q}$ where $|q|_p := p^{-\text{ord}_p(q)}$.

\mathbb{Q}_p is the completion of \mathbb{Q} under $|\cdot|_p$ (whereas \mathbb{R} is the completion of \mathbb{Q} under $|\cdot|$).

Properties of these functions for $q_1, q_2 \in \mathbb{Q}_p$:

(a) $\text{ord}_p(q_1 + q_2) \geq \min(\text{ord}_p(q_1), \text{ord}_p(q_2))$;

(b) $|q_1 + q_2|_p \leq \max(|q_1|_p, |q_2|_p)$ (much stronger than the triangle inequality);

(c) $s \in \mathbb{Z}_p \iff \text{ord}_p(s) \geq 0$.

The p-adic absolute value

Overview of \mathbb{Q}_p Algorithm by Example
The p-adic absolute value

- Another useful function is the p-adic absolute value $| \cdot |_p : \mathbb{Q} \to \mathbb{Q}$ where $|q|_p := p^{-\text{ord}_p(q)}$.
- \mathbb{Q}_p is the completion of \mathbb{Q} under $| \cdot |_p$ (whereas \mathbb{R} is the completion of \mathbb{Q} under $| \cdot |$).

Properties of these functions for $q_1, q_2 \in \mathbb{Q}_p$:

(a) $\text{ord}_p(q_1 + q_2) \geq \min(\text{ord}_p(q_1), \text{ord}_p(q_2))$;
(b) $|q_1 + q_2|_p \leq \max(|q_1|_p, |q_2|_p)$ (much stronger than the triangle inequality);
(c) $s \in \mathbb{Z}_p \iff \text{ord}_p(s) \geq 0$.

J. Dreibelbis

Bounding Intersections of Orbit Sets with Curves
The p-adic absolute value

- Another useful function is the p-adic absolute value $| \cdot |_p : \mathbb{Q} \to \mathbb{Q}$ where $|q|_p := p^{-\text{ord}_p(q)}$.
- \mathbb{Q}_p is the completion of \mathbb{Q} under $| \cdot |_p$ (whereas \mathbb{R} is the completion of \mathbb{Q} under $| \cdot |$).
- Properties of these functions for $q_1, q_2 \in \mathbb{Q}_p$:
 (a) $\text{ord}_p(q_1 + q_2) \geq \min(\text{ord}_p(q_1), \text{ord}_p(q_2))$;
 (b) $|q_1 + q_2|_p \leq \max(|q_1|_p, |q_2|_p)$ (much stronger than the triangle inequality);
 (c) $s \in \mathbb{Z}_p \iff \text{ord}_p(s) \geq 0$.
Fix a prime number p. An element $q \in \mathbb{Q}_p$ has the unique form, for some $L \in \mathbb{Z}$,

$$q := \sum_{i=L}^{\infty} q_i p^i$$

where each $q_i \in \mathbb{Z}$ satisfies $0 \leq q_i < p$.

Here are some notable special cases (with M an integer):

- $\sum_{i=L}^{M} q_i p^i \in \mathbb{Q}$
- $\sum_{i=0}^{\infty} q_i p^i \in \mathbb{Z}_p$
- $\sum_{i=0}^{M} q_i p^i \in \mathbb{Z}$.
Structure of \mathbb{Q}_p

- Fix a prime number p. An element $q \in \mathbb{Q}_p$ has the unique form, for some $L \in \mathbb{Z}$,

$$q := \sum_{i=L}^{\infty} q_i p^i$$

where each $q_i \in \mathbb{Z}$ satisfies $0 \leq q_i < p$.

- Here are some notable special cases (with M an integer):

$$\sum_{i=L}^{M} q_i p^i \in \mathbb{Q}$$

$$\sum_{i=0}^{\infty} q_i p^i \in \mathbb{Z}_p$$

$$\sum_{i=0}^{M} q_i p^i \in \mathbb{Z}.$$
The p-adic ordinal on \mathbb{Q}_p

- The p-adic ordinal and absolute value can be extended to \mathbb{Q}_p.
- For example,

$$\text{ord}_p(p^{-3} + p^{-2} + p^{-1} + 1 + p + \cdots) = -3$$

$$\text{ord}_7(1/49) = \text{ord}_7(1) - \text{ord}_7(49) = -2$$

$$\text{ord}_5(1 + 5 + 5^2 + 5^3 + \cdots) = \text{ord}_5(1/(1 - 5)) = 0.$$
The p-adic ordinal on \mathbb{Q}_p

- The p-adic ordinal and absolute value can be extended to \mathbb{Q}_p.
- For example,

$$\text{ord}_p(p^{-3} + p^{-2} + p^{-1} + 1 + p + \cdots) = -3$$

$$\text{ord}_7(1/49) = \text{ord}_7(1) - \text{ord}_7(49) = -2$$

$$\text{ord}_5(1 + 5 + 5^2 + 5^3 + \cdots) = \text{ord}_5(1/(1 - 5)) = 0.$$
Strategy

- Parameterize the coordinates of the points, P_n, in the orbit set, $\text{Orb}_\Phi(\vec{q})$, as $P_n = (f_1(n), f_2(n))$ for suitable functions $f_i(n)$.

- If $P_n \in C = \mathbb{Z} \left(\sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} x^i y^j \right)$ then $\sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} (f_1(n))^i (f_2(n))^j = 0$.

- The last summation, when the eigenvalues of Φ are in \mathbb{Q}_p, generates at most p^2 p-adic analytic functions.

- The number of integer zeroes for each p-adic analytic function is then bounded by Strassman’s Theorem using the $\text{ord}_p(\cdot)$ values of the coefficients.
Strategy

- Parameterize the coordinates of the points, \(P_n \), in the orbit set, \(\text{Orb}_\Phi(\vec{q}) \), as \(P_n = (f_1(n), f_2(n)) \) for suitable functions \(f_i(n) \).

- If \(P_n \in C = \mathbb{Z} \left(\sum_{i+j \leq d, \ i,j \geq 0} a_{i,j}x^iy^j \right) \) then \(\sum_{i+j \leq d, \ i,j \geq 0} a_{i,j}(f_1(n))^i(f_2(n))^j = 0. \)

- The last summation, when the eigenvalues of \(\Phi \) are in \(\mathbb{Q}_p \), generates at most \(p^2 \) \(p \)-adic analytic functions.

- The number of integer zeroes for each \(p \)-adic analytic function is then bounded by Strassman’s Theorem using the \(\text{ord}_p(\cdot) \) values of the coefficients.
Strategy

- Parameterize the coordinates of the points, P_n, in the orbit set, $\text{Orb}_\Phi(\vec{q})$, as $P_n = (f_1(n), f_2(n))$ for suitable functions $f_i(n)$.

- If $P_n \in C = \mathbb{Z} \left(\sum_{i+j\leq d \atop i,j\geq 0} a_{i,j} x^i y^j \right)$ then $\sum_{i+j\leq d \atop i,j\geq 0} a_{i,j} (f_1(n))^i (f_2(n))^j = 0$.

- The last summation, when the eigenvalues of Φ are in \mathbb{Q}_p, generates at most p^2 p-adic analytic functions.

- The number of integer zeroes for each p-adic analytic function is then bounded by Strassman’s Theorem using the $\text{ord}_p(\cdot)$ values of the coefficients.
Strategy

- Parameterize the coordinates of the points, P_n, in the orbit set, $\text{Orb}_\Phi(\vec{q})$, as $P_n = (f_1(n), f_2(n))$ for suitable functions $f_i(n)$.

- If $P_n \in C = \mathbb{Z} \left(\sum_{i+j \leq d \atop i,j \geq 0} a_{i,j} x^i y^j \right)$ then $\sum_{i+j \leq d \atop i,j \geq 0} a_{i,j}(f_1(n))^i(f_2(n))^j = 0$.

- The last summation, when the eigenvalues of Φ are in \mathbb{Q}_p, generates at most p^2 p-adic analytic functions.

- The number of integer zeroes for each p-adic analytic function is then bounded by Strassman’s Theorem using the $\text{ord}_p(\cdot)$ values of the coefficients.
The p^2 p-adic analytic functions

Suppose $\Phi : \mathbb{Q}_p^2 \rightarrow \mathbb{Q}_p^2$ has associated matrix M which is invertible modulo $p\mathbb{Z}_p$. We may also assume that M is in Jordan form.

Using the p-adic logarithm and exponential functions when $M \equiv I \pmod{p\mathbb{Z}_p}$ we find that $\Phi^n(\vec{q}) = M^n\vec{q} = \exp_p(\log_p(M^n))\vec{q} = (f_1(n), f_2(n))$.

If $M \equiv I \pmod{p\mathbb{Z}_p}$ then the summation on previous slide will already be p-adic analytic.
The p^2 p-adic analytic functions

- Suppose $\Phi : \mathbb{Q}_p^2 \rightarrow \mathbb{Q}_p^2$ has associated matrix M which is invertible modulo $p\mathbb{Z}_p$. We may also assume that M is in Jordan form.

- Using the p-adic logarithm and exponential functions when $M \equiv I \pmod{p\mathbb{Z}_p}$ we find that $\Phi^n(\vec{q}) = M^n \vec{q} = \exp_p(\log_p(M^n))\vec{q} = (f_1(n), f_2(n))$.

- If $M \equiv I \pmod{p\mathbb{Z}_p}$ then the summation on previous slide will already be p-adic analytic.
Suppose $\Phi : \mathbb{Q}_p^2 \rightarrow \mathbb{Q}_p^2$ has associated matrix M which is invertible modulo $p\mathbb{Z}_p$. We may also assume that M is in Jordan form.

Using the p-adic logarithm and exponential functions when $M \equiv I \pmod{p\mathbb{Z}_p}$ we find that

$$\Phi^n(\tilde{q}) = M^n \tilde{q} = \exp_p(\log_p(M^n))\tilde{q} = (f_1(n), f_2(n)).$$

If $M \equiv I \pmod{p\mathbb{Z}_p}$ then the summation on previous slide will already be p-adic analytic.
The p^2 p-adic analytic functions

- If $M \not\equiv I \pmod{p\mathbb{Z}_p}$ then $M^k \equiv I \pmod{p\mathbb{Z}_p}$ for some $k \leq p^2$.
- For example, $M := \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.
- Over \mathbb{Q}_5, $M^4 \equiv I \pmod{5\mathbb{Z}_5}$.
- Then we can partition the orbit set into k subsets:
 $$\text{Orb}_\Phi(q) = \bigcup_{i=0}^{k-1} \text{Orb}_{\Phi^k}(\Phi^i(q)).$$
- The summation generated by $(\Phi^k, \Phi^i(q), C)$ is p-adic analytic.
The p^2 p-adic analytic functions

- If $M \not\equiv I \pmod{p\mathbb{Z}_p}$ then $M^k \equiv I \pmod{p\mathbb{Z}_p}$ for some $k \leq p^2$.

- For example, $M := \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.

- Over \mathbb{Q}_5, $M^4 \equiv I \pmod{5\mathbb{Z}_5}$.

- Then we can partition the orbit set into k subsets:

$$\text{Orb}_\Phi(\vec{q}) = \bigcup_{i=0}^{k-1} \text{Orb}_{\Phi^k}(\Phi^i(\vec{q})).$$

- The summation generated by $(\Phi^k, \Phi^i(\vec{q}), C)$ is p-adic analytic.
The \(p^2 \ p \)-adic analytic functions

- If \(M \not\equiv I \pmod{p\mathbb{Z}_p} \) then \(M^k \equiv I \pmod{p\mathbb{Z}_p} \) for some \(k \leq p^2 \).
- For example, \(M := \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \).
- Over \(\mathbb{Q}_5 \), \(M^4 \equiv I \pmod{5\mathbb{Z}_5} \).
- Then we can partition the orbit set into \(k \) subsets:
 \[
 \text{Orb}_{\Phi} (\vec{q}) = \bigcup_{i=0}^{k-1} \text{Orb}_{\Phi^i} (\Phi^i (\vec{q})) .
 \]
- The summation generated by \((\Phi^k, \Phi^i(\vec{q}), C) \) is \(p \)-adic analytic.
The p^2 p-adic analytic functions

- If $M \not\equiv I \pmod{p\mathbb{Z}_p}$ then $M^k \equiv I \pmod{p\mathbb{Z}_p}$ for some $k \leq p^2$.
- For example, $M := \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.
- Over \mathbb{Q}_5, $M^4 \equiv I \pmod{5\mathbb{Z}_5}$.
- Then we can partition the orbit set into k subsets:
 $$\text{Orb}_\Phi(\vec{q}) = \bigcup_{i=0}^{k-1} \text{Orb}_{\Phi^k}(\Phi^i(\vec{q})).$$
- The summation generated by $(\Phi^k, \Phi^i(\vec{q}), C)$ is p-adic analytic.
The p^2 p-adic analytic functions

- If $M \not\equiv I \pmod{p\mathbb{Z}_p}$ then $M^k \equiv I \pmod{p\mathbb{Z}_p}$ for some $k \leq p^2$.
- For example, $M := \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.
- Over \mathbb{Q}_5, $M^4 \equiv I \pmod{5\mathbb{Z}_5}$.
- Then we can partition the orbit set into k subsets:

$$\text{Orb}_\Phi(\vec{q}) = \bigcup_{i=0}^{k-1} \text{Orb}_{\Phi^k}(\Phi^i(\vec{q})) .$$

- The summation generated by $(\Phi^k, \Phi^i(\vec{q}), C)$ is p-adic analytic.
Strassman’s Theorem

Theorem (Strassman 1928)

Let \(F(n) = \sum_{k=0}^{\infty} a_k n^k \in \mathbb{Q}_p[[n]] \) with \(\text{ord}_p(a_k) \to \infty \) so that \(F(n) \) converges for all \(n \in \mathbb{Z}_p \). Let \(N \) be defined by:

(i) \(\text{ord}_p(a_N) = \min \{ \text{ord}_p(a_k) \mid k \in \mathbb{N} \} \);

(ii) \(\text{ord}_p(a_N) < \text{ord}_p(a_k) \) for all \(k > N \);

then \(F : \mathbb{Z}_p \to \mathbb{Q}_p \) has at most \(N \) zeroes in \(\mathbb{Z}_p \) (and thus at most \(N \) zeroes in \(\mathbb{Z} \)).

\(N \) is the index of the last coefficient with the minimum \(\text{ord}(\cdot) \) value.
Strassman’s Theorem

Theorem (Strassman 1928)

Let $F(n) = \sum_{k=0}^{\infty} a_k n^k \in \mathbb{Q}_p[[n]]$ with $\text{ord}_p(a_k) \to \infty$ so that $F(n)$ converges for all $n \in \mathbb{Z}_p$. Let N be defined by:

(i) $\text{ord}_p(a_N) = \min\{\text{ord}_p(a_k) \mid k \in \mathbb{N}\}$;

(ii) $\text{ord}_p(a_N) < \text{ord}_p(a_k)$ for all $k > N$;

then $F : \mathbb{Z}_p \to \mathbb{Q}_p$ has at most N zeroes in \mathbb{Z}_p (and thus at most N zeroes in \mathbb{Z}).

N is the index of the last coefficient with the minimum $\text{ord}(\cdot)$ value.
Suppose $F(n) = \sum_{k=0}^{\infty} a_k n^k \in \mathbb{Q}_p[[n]]$. Plot the points $(k, \text{ord}_p(a_k))$ and form the lower convex hull. Identify N.

![Newton Polygon Graph](image.png)
Newton Polygon

Suppose $F(n) = \sum_{k=0}^{\infty} a_k n^k \in \mathbb{Q}_p[[n]]$. Plot the points $(k, \text{ord}_p(a_k))$ and form the lower convex hull. Identify N.

![Newton Polygon Diagram]

$\text{ord}_p(a_k)$

k
Suppose $F(n) = \sum_{k=0}^{\infty} a_k n^k \in \mathbb{Q}_p[[n]]$. Plot the points $(k, \text{ord}_p(a_k))$ and form the lower convex hull. Identify N.

![Newton Polygon Diagram]
Summary of the Algorithm for \(\mathbb{Q}_p \)

- Once \(\Phi, \tilde{q}, \) and \(d \) are chosen, then we only have freedom to choose coefficients for our curve.

- To obtain the maximum number of integer zeroes in our analytic function, we must choose the coefficients to minimize the \(\text{ord}_p(\cdot) \) values of the initial coefficients.

- This leads to a system of linear equations. If the linear equations are linearly independent (which is the expectation if the intersection is finite) then there are at most \(\delta \) zeroes.

- If the original power series generates \(p^2 \) analytic functions, then there is expected to be \(p^2 \delta \) integer zeroes (so then \(|\text{Orb}_\Phi(\tilde{q}) \cap C| \leq p^2 \delta \)).
Summary of the Algorithm for \mathbb{Q}_p

- Once Φ, \vec{q}, and d are chosen, then we only have freedom to choose coefficients for our curve.

- To obtain the maximum number of integer zeroes in our analytic function, we must choose the coefficients to minimize the $\text{ord}_p(\cdot)$ values of the initial coefficients.

- This leads to a system of linear equations. If the linear equations are linearly independent (which is the expectation if the intersection is finite) then there are at most δ zeroes.

- If the original power series generates p^2 analytic functions, then there is expected to be $p^2 \delta$ integer zeroes (so then $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq p^2 \delta$).
Summary of the Algorithm for \mathbb{Q}_p

- Once Φ, \vec{q}, and d are chosen, then we only have freedom to choose coefficients for our curve.

- To obtain the maximum number of integer zeroes in our analytic function, we must choose the coefficients to minimize the $\text{ord}_p(\cdot)$ values of the initial coefficients.

- This leads to a system of linear equations. If the linear equations are linearly independent (which is the expectation if the intersection is finite) then there are at most δ zeroes.

- If the original power series generates p^2 analytic functions, then there is expected to be $p^2\delta$ integer zeroes (so then $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq p^2\delta$).
Once Φ, \vec{q}, and d are chosen, then we only have freedom to choose coefficients for our curve.

To obtain the maximum number of integer zeroes in our analytic function, we must choose the coefficients to minimize the $\text{ord}_p(\cdot)$ values of the initial coefficients.

This leads to a system of linear equations. If the linear equations are linearly independent (which is the expectation if the intersection is finite) then there are at most δ zeroes.

If the original power series generates p^2 analytic functions, then there is expected to be $p^2 \delta$ integer zeroes (so then $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq p^2 \delta$).
Let \(p := 5, \Phi(x, y) := (6x + 5y, 6y) \), \(\vec{q} := (1, 2) \), and \(C := \mathbb{Z}(\gamma + \alpha x + \beta y) \) defined over \(\mathbb{Q}_p \) and, without loss of generality, we may assume that \(\min(\text{ord}_p(\alpha), \text{ord}_p(\beta)) = 0 \).

Then, \(\text{Orb}_\Phi(\vec{q}) = \{(1, 2), (16, 12), (156, 72), (1296, 432), \ldots \} \).

It will be shown that \(|\text{Orb}_\Phi(\vec{q}) \cap C| \leq \delta = 2 \) for all curves \(C \) of degree \(d = 1 \) over \(\mathbb{Q}_p \).
Example

Let $p := 5$, $\Phi(x, y) := (6x + 5y, 6y)$, $\vec{q} := (1, 2)$, and $C := \mathbb{Z}(\gamma + \alpha x + \beta y)$ defined over \mathbb{Q}_p and, without loss of generality, we may assume that $\min(\text{ord}_p(\alpha), \text{ord}_p(\beta)) = 0$. Then, $\text{Orb}_\Phi(\vec{q}) = \{(1, 2), (16, 12), (156, 72), (1296, 432), \ldots \}$. It will be shown that $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq \delta = 2$ for all curves C of degree $d = 1$ over \mathbb{Q}_p.
Let $p := 5$, $\Phi(x, y) := (6x + 5y, 6y)$, $\bar{q} := (1, 2)$, and $C := \mathbb{Z}(\gamma + \alpha x + \beta y)$ defined over \mathbb{Q}_p and, without loss of generality, we may assume that $\min(\text{ord}_p(\alpha), \text{ord}_p(\beta)) = 0$. Then, $\text{Orb}_\Phi(\bar{q}) = \{(1, 2), (16, 12), (156, 72), (1296, 432), \ldots \}$. It will be shown that $|\text{Orb}_\Phi(\bar{q}) \cap C| \leq \delta = 2$ for all curves C of degree $d = 1$ over \mathbb{Q}_p.
Let \(p := 5, \Phi(x, y) := (6x + 5y, 6y), \vec{q} := (1, 2), \) and \(C := \mathbb{Z}(\gamma + \alpha x + \beta y) \) defined over \(\mathbb{Q}_p \) and, without loss of generality, we may assume that \(\min(\text{ord}_p(\alpha), \text{ord}_p(\beta)) = 0 \). Then, \(\text{Orb}_\Phi(\vec{q}) = \{(1, 2), (16, 12), (156, 72), (1296, 432), \ldots \} \). It will be shown that \(|\text{Orb}_\Phi(\vec{q}) \cap C| \leq \delta = 2 \) for all curves \(C \) of degree \(d = 1 \) over \(\mathbb{Q}_p \).
Example

We find that there are parameterizing functions $f_i(n)$ so that $\Phi^n(1, 2) = (f_1(n), f_2(n))$.

Write $f_1(n) := \sum_{k=0}^{\infty} b_k n^k$ and $f_2(n) := \sum_{k=0}^{\infty} c_k n^k$.

Analyzing the parameterizing functions, it can be shown that

$$\text{ord}_p(b_k) \geq k \cdot \frac{p-2}{p-1}$$

and

$$\text{ord}_p(c_k) \geq k \cdot \frac{p-2}{p-1}.$$

For $k \geq 3$ and $p = 5$, we have $\min(\text{ord}_p(b_k), \text{ord}_p(c_k)) \geq 3$.

For $k \geq 3$ and $p = 5$, if $\alpha, \beta \in \mathbb{Z}_p$ then

$$\min(\text{ord}_p(\alpha b_k + \beta c_k)) \geq \min(\text{ord}_p(\alpha b_k), \text{ord}_p(\beta c_k)) \geq \min(\text{ord}_p(\alpha) + \text{ord}_p(b_k), \text{ord}_p(\beta) + \text{ord}_p(c_k)) \geq 3.$$
Example

- We find that there are parameterizing functions $f_i(n)$ so that $\Phi^n(1, 2) = (f_1(n), f_2(n))$.

- Write $f_1(n) := \sum_{k=0}^{\infty} b_k n^k$ and $f_2(n) := \sum_{k=0}^{\infty} c_k n^k$.

- Analyzing the parameterizing functions, it can be shown that $\text{ord}_p(b_k) \geq k \cdot \frac{(p-2)}{p-1}$ and $\text{ord}_p(c_k) \geq k \cdot \frac{(p-2)}{p-1}$.

- For $k \geq 3$ and $p = 5$, we have $\min(\text{ord}_p(b_k), \text{ord}_p(c_k)) \geq 3$.

- For $k \geq 3$ and $p = 5$, if $\alpha, \beta \in \mathbb{Z}_p$ then

 \[
 \min(\text{ord}_p(\alpha b_k + \beta c_k)) \geq \min(\text{ord}_p(\alpha b_k), \text{ord}_p(\beta c_k)) \\
 \geq \min(\text{ord}_p(\alpha) + \text{ord}_p(b_k), \text{ord}_p(\beta) + \text{ord}_p(c_k)) \\
 \geq 3.
 \]
Example

- We find that there are parameterizing functions $f_i(n)$ so that $\Phi^n(1, 2) = (f_1(n), f_2(n))$.

- Write $f_1(n) := \sum_{k=0}^{\infty} b_k n^k$ and $f_2(n) := \sum_{k=0}^{\infty} c_k n^k$.

- Analyzing the parameterizing functions, it can be shown that $\text{ord}_p(b_k) \geq k \cdot \frac{(p-2)}{p-1}$ and $\text{ord}_p(c_k) \geq k \cdot \frac{(p-2)}{p-1}$.

- For $k \geq 3$ and $p = 5$, we have $\min(\text{ord}_p(b_k), \text{ord}_p(c_k)) \geq 3$.

- For $k \geq 3$ and $p = 5$, if $\alpha, \beta \in \mathbb{Z}_p$ then

$$\min(\text{ord}_p(\alpha b_k + \beta c_k)) \geq \min(\text{ord}_p(\alpha b_k), \text{ord}_p(\beta c_k)) \geq \min(\text{ord}_p(\alpha) + \text{ord}_p(b_k), \text{ord}_p(\beta) + \text{ord}_p(c_k)) \geq 3.$$
Example

- We find that there are parameterizing functions $f_i(n)$ so that $\Phi^n(1, 2) = (f_1(n), f_2(n))$.

- Write $f_1(n) := \sum_{k=0}^{\infty} b_k n^k$ and $f_2(n) := \sum_{k=0}^{\infty} c_k n^k$.

- Analyzing the parameterizing functions, it can be shown that $\text{ord}_p(b_k) \geq k \cdot \frac{p-2}{p-1}$ and $\text{ord}_p(c_k) \geq k \cdot \frac{p-2}{p-1}$.

- For $k \geq 3$ and $p = 5$, we have $\min(\text{ord}_p(b_k), \text{ord}_p(c_k)) \geq 3$.

- For $k \geq 3$ and $p = 5$, if $\alpha, \beta \in \mathbb{Z}_p$ then

 $\min(\text{ord}_p(\alpha b_k + \beta c_k)) \geq \min(\text{ord}_p(\alpha b_k), \text{ord}_p(\beta c_k))$

 $\geq \min(\text{ord}_p(\alpha) + \text{ord}_p(b_k), \text{ord}_p(\beta) + \text{ord}_p(c_k))$

 ≥ 3.
Example

- We find that there are parameterizing functions $f_i(n)$ so that $\Phi^n(1, 2) = (f_1(n), f_2(n))$.

- Write $f_1(n) := \sum_{k=0}^{\infty} b_k n^k$ and $f_2(n) := \sum_{k=0}^{\infty} c_k n^k$.

- Analyzing the parameterizing functions, it can be shown that $\text{ord}_p(b_k) \geq k \cdot \frac{(p-2)}{p-1}$ and $\text{ord}_p(c_k) \geq k \cdot \frac{(p-2)}{p-1}$.

- For $k \geq 3$ and $p = 5$, we have $\min(\text{ord}_p(b_k), \text{ord}_p(c_k)) \geq 3$.

- For $k \geq 3$ and $p = 5$, if $\alpha, \beta \in \mathbb{Z}_p$ then

 $$\min(\text{ord}_p(\alpha b_k + \beta c_k)) \geq \min(\text{ord}_p(\alpha b_k), \text{ord}_p(\beta c_k))$$

 $$\geq \min(\text{ord}_p(\alpha) + \text{ord}_p(b_k), \text{ord}_p(\beta) + \text{ord}_p(c_k))$$

 $$\geq 3.$$
Example

- The first four coefficients of $f_1(n)$:

 $b_0 = 1$
 $b_1 = 3p + 0p^2 + 1p^3 + 1p^4 + b_{1,5}$
 $b_2 = 2p^3 + 0p^4 + b_{2,5}$
 $b_3 = 2p^3 + 3p^4 + b_{3,5}$.

- The first four coefficients of $f_2(n)$:

 $c_0 = 2$
 $c_1 = 2p + 4p^2 + 3p^3 + 0p^4 + c_{1,5}$
 $c_2 = 1p^2 + 4p^3 + 2p^4 + c_{2,5}$
 $c_3 = 2p^3 + 0p^4 + c_{3,5}$.
Example

- The first four coefficients of $f_1(n)$:
 \[
 b_0 = 1 \\
 b_1 = 3p + 0p^2 + 1p^3 + 1p^4 + b_{1,5} \\
 b_2 = 2p^3 + 0p^4 + b_{2,5} \\
 b_3 = 2p^3 + 3p^4 + b_{3,5}.
 \]

- The first four coefficients of $f_2(n)$:
 \[
 c_0 = 2 \\
 c_1 = 2p + 4p^2 + 3p^3 + 0p^4 + c_{1,5} \\
 c_2 = 1p^2 + 4p^3 + 2p^4 + c_{2,5} \\
 c_3 = 2p^3 + 0p^4 + c_{3,5}.
 \]
Example

If $P_n \in C$ then

$$0 = \gamma + \alpha f_1(n) + \beta f_2(n)$$

$$= \gamma + b_0 + c_0 + \sum_{k=1}^{\infty} (\alpha b_k + \beta c_k)n^k$$

$$:= \sum_{k=0}^{\infty} d_k n^k$$

$$:= F(n)$$

Choose α and β so that $\text{ord}_p(d_1) = \text{ord}_p(d_2)$. Then it is also possible to choose the constant term γ so that $\text{ord}_p(d_0) = \text{ord}_p(d_1)$. With these choices, we see that $N \geq 2$.

Next, we will show that $\text{ord}_p(d_k) > \text{ord}_p(d_2)$ for $k > 2$ which implies that $N = 2$.
Example

If \(P_n \in C \) then

\[
0 = \gamma + \alpha f_1(n) + \beta f_2(n) \\
= \gamma + b_0 + c_0 + \sum_{k=1}^{\infty} (\alpha b_k + \beta c_k) n^k \\
:= \sum_{k=0}^{\infty} d_k n^k \\
:= F(n)
\]

Choose \(\alpha \) and \(\beta \) so that \(\text{ord}_p(d_1) = \text{ord}_p(d_2) \). Then it is also possible to choose the constant term \(\gamma \) so that \(\text{ord}_p(d_0) = \text{ord}_p(d_1) \). With these choices, we see that \(N \geq 2 \).

Next, we will show that \(\text{ord}_p(d_k) > \text{ord}_p(d_2) \) for \(k > 2 \) which implies that \(N = 2 \).
Example

A closer look at the initial coefficients of $F(n)$:

\[
d_1 = \alpha b_1 + \beta c_1 \\
= \alpha(3p + 0p^2 + 1p^3 + 1p^4 + b_{1,5}) + \beta(2p + 4p^2 + 3p^3 + 0p^4 + c_{1,5}) \\
\equiv (3\alpha + 2\beta)p + (4\beta)p^2 \pmod{p^3}
\]

\[
d_2 = \alpha b_2 + \beta c_2 \\
= \alpha(2p^3 + 0p^4 + b_{2,5}) + \beta(1p^2 + 4p^3 + 2p^4 + c_{2,5}) \\
\equiv (\beta)p^2 \pmod{p^3}
\]
Example

A closer look at the initial coefficients of $F(n)$:

$$d_1 = \alpha b_1 + \beta c_1$$

$$= \alpha (3p + 0p^2 + 1p^3 + 1p^4 + b_{1,5}) + \beta (2p + 4p^2 + 3p^3 + 0p^4 + c_{1,5})$$

$$\equiv (3\alpha + 2\beta)p + (4\beta)p^2 \pmod{p^3}$$

$$d_2 = \alpha b_2 + \beta c_2$$

$$= \alpha (2p^3 + 0p^4 + b_{2,5}) + \beta (1p^2 + 4p^3 + 2p^4 + c_{2,5})$$

$$\equiv (\beta)p^2 \pmod{p^3}$$
Example

A closer look at the initial coefficients of $F(n)$:

\[d_1 = \alpha b_1 + \beta c_1 \]
\[= \alpha (3p + 0p^2 + 1p^3 + 1p^4 + b_{1,5}) + \beta (2p + 4p^2 + 3p^3 + 0p^4 + c_{1,5}) \]
\[\equiv (3\alpha + 2\beta)p + (4\beta)p^2 \pmod{p^3} \]

\[d_2 = \alpha b_2 + \beta c_2 \]
\[= \alpha (2p^3 + 0p^4 + b_{2,5}) + \beta (1p^2 + 4p^3 + 2p^4 + c_{2,5}) \]
\[\equiv (\beta)p^2 \pmod{p^3} \]
Introduction
Orbit Sets Induced by a Linear Map with Eigenvalues in \mathbb{R}
Orbit Sets Induced by a Linear Map with Eigenvalues in \mathbb{Q}_p
Conclusion

Example

So that $\text{ord}_p(d_1) = 2 = \text{ord}_p(d_2)$ we need:

$$3\alpha + 2\beta \equiv 0 \pmod{p}$$

$$\beta \not\equiv 0 \pmod{p}$$

Therefore, we select β as above, then we select α. Now all that is left is to choose γ so that $\text{ord}_p(d_0) = 2$. This produces a Newton Polygon whose minimum $\text{ord}_p(\cdot)$ value is 2 (occurring at d_0, d_1, and d_2). However, a close inspection of d_3 reveals that $\text{ord}_p(d_3) \geq 3$ (as are the $\text{ord}_p(\cdot)$ values of d_k for $k > 3$) so Strassman’s Theorem implies that there are at most 2 integer zeroes of $F(n)$. This, in turn, implies that $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq 2$. §
So that $\text{ord}_p(d_1) = 2 = \text{ord}_p(d_2)$ we need:

$$3\alpha + 2\beta \equiv 0 \pmod{p}$$
$$\beta \not\equiv 0 \pmod{p}$$

Therefore, we select β as above, then we select α. Now all that is left is to choose γ so that $\text{ord}_p(d_0) = 2$. This produces a Newton Polygon whose minimum $\text{ord}_p(\cdot)$ value is 2 (occurring at d_0, d_1, and d_2). However, a close inspection of d_3 reveals that $\text{ord}_p(d_3) \geq 3$ (as are the $\text{ord}_p(\cdot)$ values of d_k for $k > 3$) so Strassman’s Theorem implies that there are at most 2 integer zeroes of $F(n)$. This, in turn, implies that $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq 2$. §
Example

So that $\text{ord}_p(d_1) = 2 = \text{ord}_p(d_2)$ we need:

$$3\alpha + 2\beta \equiv 0 \pmod{p}$$
$$\beta \not\equiv 0 \pmod{p}$$

Therefore, we select β as above, then we select α. Now all that is left is to choose γ so that $\text{ord}_p(d_0) = 2$. This produces a Newton Polygon whose minimum $\text{ord}_p(\cdot)$ value is 2 (occurring at $d_0, d_1, \text{and } d_2$). However, a close inspection of d_3 reveals that $\text{ord}_p(d_3) \geq 3$ (as are the $\text{ord}_p(\cdot)$ values of d_k for $k > 3$) so Strassman’s Theorem implies that there are at most 2 integer zeroes of $F(n)$. This, in turn, implies that $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq 2$. §
So that $\text{ord}_p(d_1) = 2 = \text{ord}_p(d_2)$ we need:

$$3\alpha + 2\beta \equiv 0 \pmod{p}$$
$$\beta \not\equiv 0 \pmod{p}$$

Therefore, we select β as above, then we select α. Now all that is left is to choose γ so that $\text{ord}_p(d_0) = 2$. This produces a Newton Polygon whose minimum $\text{ord}_p(\cdot)$ value is 2 (occurring at $d_0, d_1, \text{and } d_2$). However, a close inspection of d_3 reveals that $\text{ord}_p(d_3) \geq 3$ (as are the $\text{ord}_p(\cdot)$ values of d_k for $k > 3$) so Strassman’s Theorem implies that there are at most 2 integer zeroes of $F(n)$. This, in turn, implies that $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq 2$. §
Example

So that $\text{ord}_p(d_1) = 2 = \text{ord}_p(d_2)$ we need:

$$3\alpha + 2\beta \equiv 0 \pmod{p}$$

$$\beta \not\equiv 0 \pmod{p}$$

Therefore, we select β as above, then we select α. Now all that is left is to choose γ so that $\text{ord}_p(d_0) = 2$. This produces a Newton Polygon whose minimum $\text{ord}_p(\cdot)$ value is 2 (occurring at $d_0, d_1,$ and d_2). However, a close inspection of d_3 reveals that $\text{ord}_p(d_3) \geq 3$ (as are the $\text{ord}_p(\cdot)$ values of d_k for $k > 3$) so Strassman’s Theorem implies that there are at most 2 integer zeroes of $F(n)$. This, in turn, implies that $|\text{Orb}_\Phi(\overline{q}) \cap C| \leq 2$. §
Main Results

Theorem (D. 2010)

For $N > 1$, if $\{a_n\}_{n \in \mathbb{N}}$ is a non-degenerate N-ary recurrence sequence of real numbers whose characteristic roots are all real, then there are at most $2N - 3$ integers n such that $a_n = 0$.

Theorem (D. 2010)

If the eigenvalues of a linear map $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ are real, $\vec{q} \in \mathbb{R}^2$, $C \subset \mathbb{R}^2$ is a curve of degree d, and $|\text{Orb}_\Phi(\vec{q}) \cap C|$ is finite, then $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq d^2 + 3d - 1$.

An algorithm for the orbit set problem over \mathbb{Q}_p.

J. Dreibelbis
Bounding Intersections of Orbit Sets with Curves
Main Results

Theorem (D. 2010)

For $N > 1$, if $\{a_n\}_{n \in \mathbb{N}}$ is a non-degenerate N-ary recurrence sequence of real numbers whose characteristic roots are all real, then there are at most $2N - 3$ integers n such that $a_n = 0$.

Theorem (D. 2010)

If the eigenvalues of a linear map $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ are real, $\vec{q} \in \mathbb{R}^2$, $C \subset \mathbb{R}^2$ is a curve of degree d, and $|\text{Orb}_{\Phi}(\vec{q}) \cap C|$ is finite, then $|\text{Orb}_{\Phi}(\vec{q}) \cap C| \leq d^2 + 3d - 1$.

An algorithm for the orbit set problem over \mathbb{Q}_p.
Main Results

Theorem (D. 2010)

For $N > 1$, if $\{a_n\}_{n \in \mathbb{N}}$ is a non-degenerate N-ary recurrence sequence of real numbers whose characteristic roots are all real, then there are at most $2N - 3$ integers n such that $a_n = 0$.

Theorem (D. 2010)

If the eigenvalues of a linear map $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ are real, $\vec{q} \in \mathbb{R}^2$, $C \subset \mathbb{R}^2$ is a curve of degree d, and $|\text{Orb}_\Phi(\vec{q}) \cap C|$ is finite, then $|\text{Orb}_\Phi(\vec{q}) \cap C| \leq d^2 + 3d - 1$.

An algorithm for the orbit set problem over \mathbb{Q}_p.

J. Dreibelbis Bounding Intersections of Orbit Sets with Curves
Future Work

Find a sharp, upper bound B where $\delta + 1 \leq B \leq 2\delta - 1$ for $|\text{Orb}_\Phi(\vec{q}) \cap C|$ when Φ has real eigenvalues.

Conjecture (D. 2010)

If $\Phi : \mathbb{R}^g \rightarrow \mathbb{R}^g$ is a linear map with real eigenvalues, $\vec{q} \in \mathbb{R}^g$,

$$H = Z \left(\sum_{\substack{i_1+\cdots+i_g \leq d \\ i_1,\ldots,i_g \geq 0}} a_{i_1,\ldots,i_g} x_1^{i_1} \cdots x_g^{i_g} \right)$$

with $a_{i_1,\ldots,i_g} \in \mathbb{R}$, and $|\text{Orb}_\Phi(\vec{q}) \cap H|$ is finite then there are at most $2\delta - 1$ points in the intersection.
Future Work

Find a sharp, upper bound B where $\delta + 1 \leq B \leq 2\delta - 1$ for $|\text{Orb}_\Phi(\bar{q}) \cap C|$ when Φ has real eigenvalues.

Conjecture (D. 2010)

If $\Phi : \mathbb{R}^g \rightarrow \mathbb{R}^g$ is a linear map with real eigenvalues, $\bar{q} \in \mathbb{R}^g$, $H = \mathbb{Z} \left(\sum_{i_1+\cdots+i_g \leq d \atop i_1,\ldots,i_g \geq 0} a_{i_1,\ldots,i_g} x_1^{i_1} \cdots x_g^{i_g} \right)$ with $a_{i_1,\ldots,i_g} \in \mathbb{R}$, and $|\text{Orb}_\Phi(\bar{q}) \cap H|$ is finite then there are at most $2\delta - 1$ points in the intersection.
Conjecture (D. 2010)

If \(\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is a linear map with eigenvalues in \(\mathbb{Q}_p \), \(\vec{q} \in \mathbb{Q}_p^2 \), \(C \) is a curve of degree \(d \) over \(\mathbb{Q}_p \), and \(|\text{Orb}_\Phi(\vec{q}) \cap C| \) is finite then there are at most \(p^2 \cdot \delta \) points in the intersection.

For a map \(\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) with \(\Phi(x, y) := (P_1(x, y), P_2(x, y)) \) find a uniform upper bound for \(|\text{Orb}_\Phi(\vec{q}) \cap C| \) depending only on the degree of \(C \) and the degrees of \(P_1 \) and \(P_2 \).
Conjecture (D. 2010)

If \(\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is a linear map with eigenvalues in \(\mathbb{Q}_p \), \(\vec{q} \in \mathbb{Q}_p^2 \), \(C \) is a curve of degree \(d \) over \(\mathbb{Q}_p \), and \(|\text{Orb}_\Phi(\vec{q}) \cap C| \) is finite then there are at most \(p^2 \cdot \delta \) points in the intersection.

For a map \(\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) with \(\Phi(x, y) := (P_1(x, y), P_2(x, y)) \) find a uniform upper bound for \(|\text{Orb}_\Phi(\vec{q}) \cap C| \) depending only on the degree of \(C \) and the degrees of \(P_1 \) and \(P_2 \).
Bounding Intersections of Orbit Sets with Curves

Joel D. Dreibelbis