RIT

20. "Single-Walled Carbon Nanotube Separations Using Simple Metal Ionic Salt Additives in Gel-based Chromatography," J.-D. R. Rocha, R. F. Ashour, L. M. Breindel, R. C. Capasse, B. Zeghum, ECS Journal of Solid State Science and Technology, 6(6), M3148-M3154, 2017, (DOI: 10.1149/2.0261706jss).

19. "Highly Effective Adsorption of Organic Aromatic Molecules by Electronically Sorted Single-walled Carbon Nanotubes," J.-D. R. Rocha, R. Rogers, A. Dichiara, R. C. Capasse, Environ. Sci.: Water Res. Technol., 3(2), 203-212, 2017, (DOI: 10.1039/C6EW00284F).


Postgraduate

18. "Spectroscopic Identification of Hydrogen Spillover Species in Ruthenium-modified High Surface Area Carbons by Diffuse Reflectance Infrared Fourier Transform Spectroscopy," J. L. Blackburn, C. Engtrakul, J. B. Bult, K. Hurst, Y. Zhao, Q. Xu, P. A. Parilla, L. J. Simpson, J.-D. R. Rocha, M. R. Hudson, C. M. Brown, T. Gennett, J. Phys. Chem. C, 116(51), 26744, 2012, (DOI: 10.1021/jp305235p).

17. "Carbon nanomaterial commercialization: Lessons for graphene from carbon nanotubes," D. Arthur, R. Prada Silvy, P. Wallis, Y. Tan, J.-D. R. Rocha, D. Resasco, R. Praino, W. Hurley, MRS Bulletin, 37(12), 1297, 2012, (DOI: 10.1557/mrs.2012.276).

16. "High-Performance Hydrogen Production and Oxidation Electrodes with Hydrogenase Supported on Metallic Single-Walled Carbon Nanotube Networks," D. Svedruzic, J. L. Blackburn, R. C. Tenent, J.-D. R. Rocha, T. B. Vinzant, M. J. Heben, and P. W. King, J. Amer. Chem. Soc., 133(12), 4299, 2011, (DOI: 10.1021/ja104785e).


Graduate

15. "Efficient Spectrofluorimetric Analysis of Single-Walled Carbon Nanotube Samples," J.-D. R. Rocha, S. M. Bachilo, S. Ghosh, S. Arepalli, and R. B. Weisman, Anal. Chem., 83(19), 7431, 2011, (DOI: 10.1021/ac2014788).

14. "Self-Assembling Peptide Coatings Designed for Highly Luminescent Suspension of Single-Walled Carbon Nanotubes," D. A. Tsyboulski, E. L. Bakota, L. S. Witus, J.-D. R. Rocha, J. D. Hartgerink, and R. B. Weisman, J. Amer. Chem. Soc., 130(50), 17134, 2008, (DOI: 10.1021/ja807224x).

13. "Structure-Dependent Reactivity of Semiconducting Single-Walled Carbon Nanotubes with Benzene Diazonium Salts," C. D. Doyle, J.-D. R. Rocha, R. B. Weisman, and J. M. Tour, J. Amer. Chem. Soc., 130(21), 6795, 2008, (DOI: 10.1021/ja800198t).

12. "Structure-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes," D. A. Tsyboulski, J.-D. R. Rocha, S. M. Bachilo, L. Cognet, and R. B. Weisman, Nano Lett., 7(10), 3080, 2007, (DOI: 10.1021/nl071561s).

11. "Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions," L. Cognet, D. A. Tsyboulski, J.-D. R. Rocha, C. D. Doyle, J. M. Tour, and R. B. Weisman, Science, 316, 1465, 2007, (DOI: 10.1126/science.1141316).

10. "Peptides That Non-covalently Functionalize Single-Walled Carbon Nanotubes to Give Controlled Solubility Characteristics," L. S. Witus, J.-D. R. Rocha, V. M. Yuwono, S. E. Paramonov, R. B. Weisman, and J. D. Hartgerink, J. Mater. Chem., 17(19), 1909, 2007, (DOI: 10.1039/b700174f).

9. "Determination of the Interaction Energy Contribution of Picrate Anion Toward Stabilization of a K+-(bis-cage-annulated 20-crown-6) Complex," A. P. Marchand, A. Hazlewood, Z. Huang, S. K. Vadlakonda, J.-D. R. Rocha, T. D. Power, K. Mlinaric-Majerski, L. Klaic, G. Kragol, and J. C. Bryan, Struct. Chem., 14(3), 279, 2003, (DOI: 10.1023/A:1023863813356).

8. "Characterization of Reaction Pathways on the Potential Energy Surfaces for H + SO2 and HS + O2," A. Goumri, J.-D. R. Rocha, D. Laakso, C. E. Smith, and P. Marshall, J. Phys. Chem. A, 103(51), 11328, 1999, (DOI: 10.1021/jp9924070.

7. "Wide-Temperature Range Kinetics of the BO Reactions with O2, HCl, and CO2. Comparison to AlO Reactions," D. P. Belyung, G. T. Dalakos, J.-D. R. Rocha, and A. Fontijn, Symposium (International) on Combustion, 27(1), 227, 1998.


Undergraduate

6. "The Gas-Phase Kinetics of Reactions of Alkali Metal Atoms with Nitric Oxide," A. Goumri, J.-D. R. Rocha, A. Misra, and P. Marshall, J. Phys. Chem. A, 103(46), 9252, 1999, (DOI: 10.1021/jp992350h).

5. "Kinetics of the Recombination Reaction SH + O2 + Ar: Implications for the Formation and Loss of HSOO and SOO in the Atmosphere," A. Goumri, J.-D. R. Rocha, and P. Marshall, J. Phys. Chem., 99(27), 10834, 1995, (DOI: 10.1021/j100027a025).

4. "Computational Studies of the Potential Energy Surface for O(3P) + H2S: Characterization of Transition States and the Enthalpy of Formation of HSO and HOS," A. Goumri, D. Laakso, J.-D. R. Rocha, C. E. Smith, and P. Marshall, J. Chem. Phys., 102(1), 161, 1995, (DOI: 10.1063/1.469387).

3. "Computational Studies of the Potential Energy Surface for O(1D) + H2S: Characterization of Pathways Involving H2SO, HOSH, and H2OS," A. Goumri, J.-D. R. Rocha, D. Laakso, C. E. Smith, and P. Marshall, J. Chem. Phys., 101(11), 9405, 1994, (DOI: 10.1063/1.467971).

2. "Theoretical Studies of the RSOO, ROSO, RSO2, and HOOS (R = H, CH3) Radicals," D. Laakso, C. E. Smith, A. Goumri, J.-D. R. Rocha, and P. Marshall, Chem. Phys. Lett., 227(4-5), 377, 1994, (DOI: 10.1016/0009-2614(94)00845-0).

1. "Investigation of the Gas-Phase Kinetics of the Reaction K + SO2 + Ar," A. Goumri, D. Laakso, J.-D. R. Rocha, E. Francis, and P. Marshall, J. Phys. Chem., 97(20), 5295, 1993, (DOI: 10.1021/j100122a020).