Lecture#1

Introduction to Silicon Processes

Prof. K.D. Hirschman
9/6/10
Course Syllabus (1)

CATALOG: EMCR632/702 Silicon Processes
QTR: 20101 Registration # 0305 632 / 702

CREDITS: EMCR632 - 4 credits

PREREQUISITES: EMCR350 / 701, EMCR460 & 560

INSTRUCTOR: Dr. Karl D. Hirschman, 17-2159, x5130, e-mail: kdhemc@rit.edu

LAB ASSISTANTS: Chris Shea, MicroE grad office 9-1360

REFERENCES:
- Wolf, Microchip Manufacturing, 2004
- Wolf & Tauber, Silicon Processing for the VLSI Era, Vol 1, 2nd Ed.
- Campbell, The Science and Engineering of Microelectronic Fabrication
- Pierret, Semiconductor Device Fundamentals
- Various handouts, papers, etc.
COURSE DESCRIPTION & OBJECTIVES:

This is an advanced level course in silicon process technology. A detailed study of several of the individual processes utilized in the fabrication of VLSI circuits will be done, with a focus on engineering challenges such as shallow-junction formation and ultra-thin gate dielectrics. Front-end silicon processes will be investigated in depth including diffusion, oxidation, ion implantation, and rapid thermal processing. Particular emphasis will be placed on non-equilibrium effects. Device design and process integration details will also be emphasized. SUPREM-IV (Silvaco Athena) will be used extensively for process simulation. A project will involve the complete simulation of a twin-well CMOS process.

The laboratory will involve the fabrication and test of NMOS and PMOS transistors within the context of a full twin-well CMOS process. In addition, MOS capacitors and M-S contacts will be fabricated. Analysis of these devices will be done using I-V and C-V characterization. Silvaco process/device simulation will be used to model the twin-well CMOS process, and simulate device operation.
Course Syllabus (3)

TOPICS:
Introduction and overview of IC processes & devices
- twin-well CMOS process flow
Process Technologies
- Impurity Diffusion in Si, atomistic model
- Thermal Oxidation of Si, Si/SiO₂ interface
- Ion Implant, Implant Damage & Annealing, TED
- Rapid Thermal Processing
Process Simulation (Silvaco Athena/Atlas)
Process Integration

SCHEDULE:
Lecture: M,W,R 10-11AM 9-1129
Lab: T 9AM-Noon 17-2510 (prelab)

GRADING PERCENTAGES:
Homework 10%
CMOS simulation project 10%
4 Quizzes (25min), drop lowest grade 30%
Comprehensive Final Exam 25%
Laboratory 25%