Wafer Cleaning and Oxide Growth Laboratory

Dr. Lynn Fuller

Webpage: http://www.rit.edu/~lffeee
Microelectronic Engineering
Rochester Institute of Technology
82 Lomb Memorial Drive
Rochester, NY 14623-5604
Tel (585) 475-2035
Fax (585) 475-5041
Email: LFFEEE@rit.edu

Department Webpage: http://www.microe.rit.edu
Surface Particle Counts
RCA Clean
Oxide Growth
Furnace Operation
Oxide Thickness Measurement
CLEAN AND OXIDE GROWTH

TENCORE SURF SCAN

Gives total surface particle count and count in 4 bins <0.5, 0.5 to 2.0, 2.0-10, >10. Bin boundary can be selected. Edge exclusion eliminated count from near the edge of the wafer.
CLEAN AND OXIDE GROWTH

SURFACE PARTICLE COUNTER

PARTICLE SIZE IS RELATED TO SCATTER ANGLE

ROTATING MIRROR SCANNER

LASER

DETECTOR ARRAY AND COUNTER

WAFER WITH PARTICULATES
Example Surface Particle Count Data

Before Cleaning (75 mm)

<table>
<thead>
<tr>
<th>Size Range (µm)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 - 0.5</td>
<td>104</td>
</tr>
<tr>
<td>0.5 - 2.0</td>
<td>562</td>
</tr>
<tr>
<td>2.0 - 10</td>
<td>19</td>
</tr>
<tr>
<td>>10</td>
<td>2</td>
</tr>
</tbody>
</table>

After Cleaning (75 mm)

<table>
<thead>
<tr>
<th>Size Range (µm)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 - 0.5</td>
<td>10</td>
</tr>
<tr>
<td>0.5 - 2.0</td>
<td>4</td>
</tr>
<tr>
<td>2.0 - 10</td>
<td>3</td>
</tr>
<tr>
<td>>10</td>
<td>0</td>
</tr>
</tbody>
</table>
CLEAN AND OXIDE GROWTH

RCA CLEAN WAFERS

APM

\[
\begin{align*}
\text{H}_2\text{O} & - 4500\text{ml} \\
\text{NH}_4\text{OH} & - 300\text{ml} \\
\text{H}_2\text{O}_2 & - 900\text{ml} \\
75 \degree \text{C}, & 10 \text{ min.}
\end{align*}
\]

DI water rinse, 5 min.

DI water rinse, 5 min.

HPM

\[
\begin{align*}
\text{H}_2\text{O} & - 4500\text{ml} \\
\text{HCL} & - 300\text{ml} \\
\text{H}_2\text{O}_2 & - 900\text{ml} \\
75 \degree \text{C}, & 10 \text{ min.}
\end{align*}
\]

DI water rinse, 5 min.

What does RCA stand for?

PLAY

ANSWER

DI water rinse, 5 min.

H\textsubscript{2}O - 50 HF - 1 60 sec.

Rochester Institute of Technology
Microelectronic Engineering

© September 21, 2010 Dr. Lynn Fuller
Page 6
CLean and Oxide Growth

RCA Clean Details

- Water (H₂O), hydrogen peroxide (H₂O₂), and ammonium hydroxide (NH₄OH) mixture (APM bath, for ammonium-peroxide-mixture). Removes organics from the wafer, such as fingerprints, residual resist etc.
 - APM bath temperature 75-85°C
 - H₂O₂ is unstable and breaks down into H₂O and O the O is very reactive and protects the wafer from being etched in the strong base (NH₄OH)
 - Our H₂O₂ is unstabilized so it has a short shelf life, bubbles indicate good H₂O₂
 - Follow with a DI water cascade rinse
- Dilute hydrofluoric acid bath at room temperature. Removes oxides formed in the baths as well as native oxide under previously removed contaminants
 - Follow with a DI water cascade rinse
- Water (H₂O), hydrogen peroxide (H₂O₂), and hydrochloric acid (HCl) mixture (HPM bath, for hydrochloric-peroxide-mixture). Removes inorganic residues and heavy metals.
 - HPM bath temperature 75-85°C
 - H₂O₂ is unstable and breaks down into H₂O and O the O is very reactive and protects the wafer from being etched in the strong acid (HCl)
 - Our H₂O₂ is unstabilized, short shelf life, bubbles indicate good H₂O₂
 - Follow with a DI water cascade rinse
- Dry using the spin rinser-dryer (SRD)
Chemical Reactions:

Dry Oxidation:
\[\text{Si} + \text{O}_2(\text{gas}) \rightarrow \text{SiO}_2 \]
Used for thinner oxides and oxides of high quality

Wet Oxidation:
\[\text{Si} + 2\text{H}_2\text{O}(\text{gas}) \rightarrow \text{SiO}_2 + 2\text{H}_2(\text{gas}) \]
Used for thicker oxides because growth rate is higher
Thickness of Si consumed:
\[X_s = X_{ox} \cdot \frac{N_{ox}}{N_{Si}} \]
\[X_s = 0.44X_{ox} \]

Original Si interface

\[N_{oxide} = 2.2 \times 10^{22} \text{ cm}^{-3} \]
\[N_{silicon} = 5 \times 10^{22} \text{ cm}^{-3} \]
\[= 0.44 \]

Example: Oxide thickness grown, \(X_{ox} = 1000\text{Å} \)
Si thickness consumed, \(X_s = 440\text{Å} \)
CLEAN AND OXIDE GROWTH

OXIDATION SYSTEMS

Microcontroller

Thermocouples (TC’s)

Heat Element

profile TC’s

spike TC’s

Torch

Gas Distribution

Mass flow controllers (MFCs)

Chlorine Source (TCA)

Water Vapor

Bubbler

© September 21, 2010 Dr. Lynn Fuller

Rochester Institute of Technology
Microelectronic Engineering
Recipe #406

Boat Out Boat In Stabilize Ramp-Up Soak Anneal Ramp-Down
Load Push 800 °C 800 °C 1100 °C
Pull

25 °C

Interval 0 Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8
Any 12 min 15 min 30 min 5 min 65 min 5 min 55 min 15 min
0 lpm 10 lpm 10 lpm 5 lpm 5 lpm 10 lpm 15 lpm 10 lpm 15 lpm
none N2 N2 N2 O2 O2/H2 N2 N2 N2

At the end of a run the furnace returns to Interval 0 which is set for boat out, 25 °C and no gas flow. The furnace waits in that state until someone aborts the current recipe or loads a new recipe.

Wet Oxide Growth, Target 6,500 Å
WET OXIDE GROWTH CHART

Oxide Thickness in microns

Time in minutes

© September 21, 2010 Dr. Lynn Fuller
Rochester Institute of Technology
Microelectronic Engineering

Steam
1300C
900C
ROCHESTER INSTITUTE OF TECHNOLOGY
MICROELECTRONIC ENGINEERING

CALCULATION OF OXIDE THICKNESS
Dr. Lynn Fuller

To use this spreadsheet change the values in the white boxes. The rest of the sheet is protected and should not be changed unless you are sure of the consequences. The calculated results are shown in the purple boxes.

CONSTANTS
- **K**: 1.38E-23 JK
- **(Bo/Ao) dry**: 6230000 μm/hr
- **Ea (dry)**: 2 eV
- **(Bo/Ao) wet**: 89500000 μm/hr
- **Ea (wet)**: 2.05 eV
- **Bo dry**: 7.72E-02 μm/hr
- **Ea (dry)**: 1.23 eV
- **Bo wet**: 2.14E-02 μm/hr
- **Ea (wet)**: 0.71 eV

VARIABLES
- **Temp**: 1100°C
- **time**: 70 min
- **Xint**: 0 μA

CHOICES
- 1 = yes, 0 = no

CALCULATIONS:

\[
Xox (Oxide thickness) = \frac{A}{2}\left[1 - \left(1 + \frac{t}{tau}\right)^{\frac{B}{A}}\right]^{0.5} - 1 = 6435 \text{ Å}
\]

\[
B = \text{Bo exp} \left(\frac{-Ea}{K}\text{Temp}\right)
\]

\[
B/A = (\text{Bo/Ao}) \text{ exp} \left(\frac{-Ea}{K}\text{Temp}\right)
\]

\[
A = 1.64E+00 \text{ μm/μhr}
\]

\[
\text{tau} = (X\text{i2} - AX) / B
\]

Oxide SiO2

Silicon

Original Silicon Surface Prior to Oxide Growth

0.48 Xox (silicon consumed)
Recipe #270

1000°C

Boat Out Boat In Load Push Stabilize Ramp-Up Soak Anneal Ramp-Down Boat Out
1000°C 800 °C 25 °C 800 °C

Interval 0 Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7

Any 12 min 15 min 20 min 93 min 5 min 40 min 15 min 15 min
0 lpm 10 lpm 10 lpm 5 lpm 10 lpm 15 lpm 10 lpm 5 lpm
none N2 N2 O2 O2/ N2 N2 N2 N2

At the end of a run the furnace returns to Interval 0 which is set for boat out, 25 °C and no gas flow. The furnace waits in that state until someone aborts the current recipe or loads a new recipe.

Dry Oxide Growth, Target 700 Å
What do you get for a 50 minute growth at 1100C?
Oxide Color Versus Thickness Table

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Color</th>
<th>Thickness</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>Tan</td>
<td>4900</td>
<td>Blue</td>
</tr>
<tr>
<td>700</td>
<td>Brown</td>
<td>5000</td>
<td>Blue Green</td>
</tr>
<tr>
<td>1000</td>
<td>Dark Violet - Red Violet</td>
<td>5200</td>
<td>Green</td>
</tr>
<tr>
<td>1200</td>
<td>Royal Blue</td>
<td>5400</td>
<td>Yellow Green</td>
</tr>
<tr>
<td>1500</td>
<td>Light Blue - Metallic Blue</td>
<td>5600</td>
<td>Green Yellow</td>
</tr>
<tr>
<td>1700</td>
<td>Metallic - very light Yellow Green</td>
<td>5700</td>
<td>Yellow - "Yellowish" (at times appears to be Lt gray or metallic)</td>
</tr>
<tr>
<td>2000</td>
<td>Light Gold or Yellow - Slightly Metallic</td>
<td>5800</td>
<td>Light Orange or Yellow - Pink</td>
</tr>
<tr>
<td>2200</td>
<td>Gold with slight Yellow Orange</td>
<td>6000</td>
<td>Carnation Pink</td>
</tr>
<tr>
<td>2500</td>
<td>Orange - Melon</td>
<td>6300</td>
<td>Violet Red</td>
</tr>
<tr>
<td>2700</td>
<td>Red Violet</td>
<td>6800</td>
<td>"Bluish" (appears violet red, Blue Green, looks grayish)</td>
</tr>
<tr>
<td>3000</td>
<td>Blue - Violet Blue</td>
<td>7200</td>
<td>Blue Green - Green</td>
</tr>
<tr>
<td>3100</td>
<td>Blue</td>
<td>7700</td>
<td>"Yellowish"</td>
</tr>
<tr>
<td>3200</td>
<td>Blue - Blue Green</td>
<td>8000</td>
<td>Orange</td>
</tr>
<tr>
<td>3400</td>
<td>Light Green</td>
<td>8200</td>
<td>Salmon</td>
</tr>
<tr>
<td>3500</td>
<td>Green - Yellow Green</td>
<td>8500</td>
<td>Dull, Light Red Violet</td>
</tr>
<tr>
<td>3600</td>
<td>Yellow Green</td>
<td>8600</td>
<td>Violet</td>
</tr>
<tr>
<td>3700</td>
<td>Yellow</td>
<td>8700</td>
<td>Blue Violet</td>
</tr>
<tr>
<td>3900</td>
<td>Light Orange</td>
<td>8900</td>
<td>Blue</td>
</tr>
<tr>
<td>4100</td>
<td>Carnation Pink</td>
<td>9200</td>
<td>Blue Green</td>
</tr>
<tr>
<td>4200</td>
<td>Violet Red</td>
<td>9500</td>
<td>Dull Yellow Green</td>
</tr>
<tr>
<td>4400</td>
<td>Red Violet</td>
<td>9700</td>
<td>Yellow - "Yellowish"</td>
</tr>
<tr>
<td>4600</td>
<td>Violet</td>
<td>9900</td>
<td>Orange</td>
</tr>
<tr>
<td>4700</td>
<td>Blue Violet</td>
<td>10000</td>
<td>Carnation Pink</td>
</tr>
</tbody>
</table>

To observe a valid color, the wafer must be observed perpendicular to the surface under white (all wavelengths) light, or the optical path length will be different, hence the color will change with the angle.
CLEAN AND OXIDE GROWTH

REFLECTANCE SPECTROMETER
NANOSPEC FILM THICKNESS MEASUREMENT

INCIDENT WHITE LIGHT, THE INTENSITY OF THE REFLECTED LIGHT IS MEASURED VS WAVELENGTH

WHITE LIGHT SOURCE

MONOCHROMATOR & DETECTOR

OPTICS

WAFER

- Oxide on Silicon: 400-30,000 Å
- Nitride: 400-30,000
- Neg Resist: 500-40,000
- Poly on 300-1200 Ox: 400-10,000
- Neg Resist on Ox 300-350: 300-3500
- Nitride on Oxide 300-3500: 300-3500
- Thin Oxide: 100-500
- Thin Nitride: 100-500
- Polyimide: 500-10,000
- Positive Resist: 500-40,000
- Pos Resist on Ox 500-15,000: 4,000-30,000
1. Warm up the furnace to 800°C.
2. Do a surface particle count on C1.
3. RCA clean the wafers
4. Spin Rinse Dry
5. Do a surface particle count on C1 and C2
6. Grow Oxide, push, ramp, soak, ramp, pull.
7. Estimate Oxide Thickness using color chart.
8. Measure Oxide Thickness
DEFINITIONS

- Surfscan -
- APM -
- HPM -
- Wet O$_2$ -
- Dry O$_2$ -
- Steam -
- Cascade rinser -
- SRD -
- Puller (boat loader) -
- Reflectance Spectrophotometer (Nanospec) -
1. Why do we have to clean the wafers, give at least two reasons.

2. How are the number of particles on the wafer determined (not just the name of the instrument)?

3. List the major steps in the wafer cleaning process and the purpose of each step.

4. Why is oxide growth in wet O_2 faster than in dry oxygen?

5. Explain why the color of the oxide changes with its thickness.