Introduction to ASML PAS 5500 Wafer Alignment and Exposure

Dr. Lynn Fuller
Stephanie Bolster

Webpage: http://people.rit.edu/lffeee
Microelectronic Engineering
Rochester Institute of Technology
82 Lomb Memorial Drive
Rochester, NY 14623-5604
Tel (585) 475-2035
Email: Lynn.Fuller@rit.edu

Department Webpage: http://www.rit.edu/kgcoe/microelectronic/

Revision Date: 1-31-2017 ALIGN-ASML.PPT
DEFINITIONS

PAS – Phillips Automatic Stepper as in ASML PAS 5500/200
Reticle – quartz plate with single layer of chip layout (or array) at 5X actual size (also called photomask)
PM – primary marks (same design for mask and wafer alignment)
SPM – scribe line primary marks
NA - numerical aperture
σ - sigma or coherency
DOF – depth of focus
REMA – Reticle Masking System
INTRODUCTION

Overlay (alignment) is as important as resolution in lithography. Modern CMOS integrated circuits have ~ 30 layers to be aligned. The RIT SUB-CMOS processes use up to 15 layers. Alignment marks are placed on the wafer at the beginning of the process during the first level lithography or in a special zero level lithography. The wafers then undergo many processing steps such as CMP, oxide growth, metal deposition and LOCOS like processes. These processes change the appearance of the alignment marks. Marks that start out as trenches can change to mesas, marks with topology can become flat after CMP, marks can change color and can become buried or even invisible. Thus a strategy for alignment must be devised as part of the process design and chip layout. The strategy may include zero level wafer alignment marks, zero and first level combined wafer alignment marks, clear out exposures over wafer alignment marks for some levels, and/or use of street alignment marks.
INTRODUCTION (cont.)

The ASML PAS 5500 uses wafer alignment marks that are diffraction gratings. There are marks for both the x and y directions. These marks are illuminated with a HeNe laser at a single wavelength near 632.8 nm. The reflected wave exhibits a diffraction pattern of bright and dark lines that are focused on a sensor. The stage is moved slightly to learn the best position to match the sensor and that stage position is used to calculate the stage position to place the die under the center of the optical column. The wafer is moved to the lens center (or shifted by a fixed amount from center) and the die is exposed. The stage position for the remaining die are calculated and those die are also exposed. The wafer marks are lines and spaces etched into the starting wafer. To give maximum contrast in the diffracted pattern the etch depth $\frac{\lambda}{4n}$ results in a optical path difference of π, λ is the wavelength of the laser light and n is the index of refraction of the material above the marks (usually photoresist or oxide). The etch depth calculation gives a value of approximately $632.8/4/1.45 = 110$ nm (1100 Å)
NA = 0.48 to 0.60 variable
σ = 0.35 to 0.85 variable
With Variable Kohler, or Variable Annular illumination
Resolution = K1 λ/NA
= ~ 0.35 µm
for NA=0.6, σ =0.85
Depth of Focus = k2 λ/(NA)^2
= > 1.0 µm for NA = 0.6

i-Line Stepper λ = 365 nm
22 x 27 mm Field Size
ASML5500/200 SPECIFICATIONS

<table>
<thead>
<tr>
<th>Lens Specifications</th>
<th>PAS 5500/100D</th>
<th>PAS 5500/200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td>365</td>
<td>365</td>
</tr>
<tr>
<td>Reduction</td>
<td>5x</td>
<td>5x</td>
</tr>
<tr>
<td>NA</td>
<td>0.48 to 0.6</td>
<td>0.48 to 0.6</td>
</tr>
<tr>
<td>Linear resolution (µm)</td>
<td>≤ 0.35</td>
<td>≤ 0.32</td>
</tr>
<tr>
<td>UDOF (m) @ 0.56 NA, 0.75 σ</td>
<td>≥1.0</td>
<td>≥1.0</td>
</tr>
<tr>
<td>Feature size (line / space)</td>
<td>@0.4 µm</td>
<td>@0.35 µm</td>
</tr>
<tr>
<td>Field size diameter</td>
<td>31.11</td>
<td>31.11</td>
</tr>
<tr>
<td>Max X (mm)</td>
<td>22.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Max Y (mm)</td>
<td>27.4</td>
<td>27.4</td>
</tr>
<tr>
<td>Distortion (nm)</td>
<td><55</td>
<td><55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Illumination specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity (mW/cm²) with annular illum. N/A</td>
<td>>900</td>
</tr>
<tr>
<td>Uniformity (±%)</td>
<td><1.5</td>
</tr>
<tr>
<td>Partial Coherence</td>
<td></td>
</tr>
<tr>
<td>NA max</td>
<td>0.3 to 0.5</td>
</tr>
<tr>
<td>NA min</td>
<td>0.4 to 0.7</td>
</tr>
<tr>
<td>Annular Illum. inner sigma N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Throughput specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mm wafers (70 shots)</td>
<td>>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overlay specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Single machine overlay (nm)</td>
<td><60</td>
</tr>
<tr>
<td>Matched overlay (nm)</td>
<td><110</td>
</tr>
</tbody>
</table>
ASML PAS 5500 ILLUMINATION SYSTEM

- INTERNAL REMA
- ENERGY SENSOR
- QUARTZ ROD
- ZOOM AXICON
- LAMP
ASML PAS 5500 ILLUMINATION SYSTEM

Figure 5 Schematic diagram showing how an illumination setting is changed.

Almost in focus at wafer level

Zoom Axicon
MODULATION OF AERIAL IMAGE

Modulation:

\[M = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} \]

- Imax: Ideal
- Imin: Actual

Reticle
Objective
Lens
Wafer
CRITICAL MODULATION FOR RESIST (CMR)

Critical Modulation

\[CMR = \frac{10^{\frac{1}{\gamma}} - 1}{10^{\frac{1}{\gamma}} + 1} \]

Normalized thickness after Develop

![Diagram showing normalized thickness after develop](image)

Resist Gamma, \(\gamma \)

Slope

Log Dose (mj/cm²)

Critical Modulation

ORI620

Resist Gamma, \(\gamma \)

Critical Modulation

\[CMR = \frac{10^{\frac{1}{\gamma}} - 1}{10^{\frac{1}{\gamma}} + 1} \]
Dose to clear = Dc
Dose to size Ds = ~ 2.5 x Dc

Today we are working on finding Dc and Ds for each layer in our process. It appears that Dc is ~100mj/cm2 and Ds is ~ 250 mj/cm2
MODULATION TRANSFER FUNCTION (MTF)

MTF

Coherent (Point Source)
\[\sigma = 0 \]

Partially Coherent
\[\sigma = 0.7 \]

Incoherent (Large Source)
\[\sigma = 1 \]

2 X Lmin

Spatial Frequency
(Line Pairs / mm)

Lmin = 0.61 \(\lambda \) / NA

Critical Modulation for Resist Type A

MTF

Spatial Frequency
(Line Pairs / mm)

0.0
0.5
1.0

0.5µm 0.25µm

1000 1500 2000 2500 3000

Rochester Institute of Technology
Microelectronic Engineering

ASML Alignment and Exposure

Page 13

© January 31, 2017 Dr. Lynn Fuller
COHERENCY

Coherent - Normally incident plane wave illumination (point source)

Incoherent - a continuous spectrum of plane waves with incident angles ranging from +/- 90 degrees (infinite size source)

Partially Coherent - A finite range of incident Angles of the plane waves

Coherency - $\sigma = \frac{N_{Ac}}{N_{Ao}}$ Numerical Aperture of Condenser Lens divided by Numerical Aperture of the Objective Lens.

Illumination techniques include variable pupil (Kohler) and gaussian illumination.

Off Axis illumination allows images to be formed from the + or - 1st diffraction order. Techniques include ring illumination, quadrupole illumination, and dipole illumination.
SUMMARY

This table lists the tradeoffs for numerical aperture, NA, coherency, σ, and type of illumination as it relates to resolution, L_{min}, Depth of Focus, DOF, modulation of aerial image, M, and time to expose, throughput.

<table>
<thead>
<tr>
<th></th>
<th>L_{min}</th>
<th>DOF</th>
<th>Modulation</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing NA</td>
<td>\downarrow</td>
<td>\downarrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>Increasing σ</td>
<td>\downarrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off Axis vs. Kohler</td>
<td>\downarrow</td>
<td></td>
<td>\downarrow</td>
<td>\downarrow</td>
</tr>
</tbody>
</table>

Increasing NA, σ and using off axis illumination can give higher resolution but will be offset by poorer DOF, Modulation and throughput.
The stage position is very accurate. Its position is measured using a laser interferometer that has a fundamental accuracy of $\lambda/8 \approx 0.08\mu m$. The interferometer measures the position of the mirrors on the x and y stages while the wafer is some distance from the mirrors on the stage. If the temperature inside the environmental chamber is kept constant then the errors caused by the thermal coefficient of expansion for the stage can be minimized. The stage accuracy is monitored periodically to ensure that the interferometer is working correctly. However, in most modes of operation, including alignment, the stepper stage measured position is assumed to be perfect.
The magnet causes Zeeman splitting of the LASER frequency resulting in two circularly polarized frequency components. One left-hand circularly polarized (LHCP) the other RHCP and about 1 MHz above and below the center frequency, f_0. By applying a voltage between 270 and 1800 Volts to the piezoelectric transducer (PZT), the rear mirror can be moved, giving a small amount of resonate cavity length tuning. Tuning makes the strength of LHCP and RHCP components equal. A quarter wave plate makes the output beam have two equal strength, linearly polarized, mutually perpendicular beams.
PLANE MIRROR INTERFEROMETER

Two Frequency Zeeman LASER

Polarizing Beam Splitter

PIN photodiode and electronics

Retroreflector

X-Y Moving Stage

One Pulse for each \(\lambda/8 \) stage movement
\(\lambda/8 = 0.08 \mu m \)
Alignment involves placing the wafer /stage in a position such that the wafer/stage marks can be illuminated by the HeNe laser. The reflected diffraction pattern goes back through the lens and the wafer image is reconstructed from the +/-1st order components of the diffraction pattern (the zero order is returned to the laser, higher orders are blocked). The electric and magnetic fields are transferred through the lens as in a linear system resulting in a sinusoidal field image. The intensity is the square of the field doubling the frequency of the diffraction grating on the wafer when viewed at the mask level. This image is superimposed on the fiducial marks on the reticle and a light detector measures the brightness as the stage is moved to find best alignment of the wafer to the mask.
The red laser is split into two beams one directed toward the left side of the wafer and the other directed toward the right side of the wafer, for alignment marks on the left or right side respectively. Only one alignment mark is illuminated at a time.
TYPES OF ALIGNMENT

Fiducial – Reticle alignment when there are no alignment marks on the wafer (zero or 1st level) F1 aligned to M1 and F1 to M2

Global – After both reticle and wafer exchange F1 aligned to M1, W1 to M2, and W2 to M1

Wafer – After wafer exchange W1 aligned to M1 and W2 to M1

Reticle – After reticle exchange W1 aligned to M1 and W1 to M2
ASML RETICLE ALIGNMENT MARKS

44 um L/S 40 um L/S

Figure 3.2 The reticle alignment mark

Two reticle alignment marks are used for Through The Lens (TTL) alignment of the reticle to the wafer in global and/or field by field alignment mode. The nominal distance between the marks depends on the distance at reticle level between the alignment branches in the stepper (see Table 3.1).
ASML WAFER OR STAGE PM MARKS

17.6um L/S

16um L/S

17.6um L/S

16um L/S
The 16um L/S wafer marks are transferred to the mask at 5X for the lens magnification divided by two for the frequency doubling. This is 40um L/S equal to the period on the reticle alignment marks. (the 17.6um L/S becomes 44um L/S at the reticle) The light from the wafer goes through the lens and through the reticle alignment marks to the detector. The stage moves to determine the best alignment. Thus the wafer is aligned to the reticle.
ANIMATION OF WAFER ALIGNMENT TO RETICLE

17.6um L/S 16um L/S

17.6um L/S 16um L/S
ASML STREET PRIMARY MARKS (SPM MARKS)

8.8µm line/space

8.0µm line/space
16µm Period
72µm long

SPM_XS1_8uP16u_w72(SPM_X_AH11)
ASML STREET PRIMARY MARKS (SPM MARKS)

Street Primary Marks (SPM)

SPM_XS1_8uP16u_w72 (SPM_X_AH11)

SPM_YS1_8uP16u_w72 (SPM_Y_AH11)
RETICLE ALIGNMENT

In order to align a reticle to the stepper, the reticle must have fiducial marks at given locations near the edge of the mask. The ASML fiducial marks are shown on the following pages. They are automatically included in any stepper job written in the RIT maskshop. If your mask is made outside of RIT you will need to request fiducial marks and specify type and possibly the exact location on the mask.

You can use reticles with no fiducial marks but only in a non production mode such as exposure matrix. To do this press alignment and change alignment mode to N (none).
Once the mask is placed on the platen. The reticle prealignment marks are used to position the reticle in the approximate correct location. The stage is moved to position special alignment marks attached to the stage in the correct position to do the reticle fine alignment. Just like wafer alignment the marks are illuminated with a HeNe laser and the reticle is moved to give the best alignment position and then held in that position until removed from the stepper.
RIT SPECIFICATIONS
6” x 6” x .125” Quartz
Chrome
Write Area 22 x 27.4 mm
Fiducial Marks

Pre Alignment Marks
ASML RETICLE

Chrome Side
Mirrored 90°
Chip Bottom at Bottom

Non Chrome Side
As loaded into Reticle Pod,
Chrome Down, Reticle Pre-
Alignment Stars Sticking out
of Pod
ASML 4 LEVELS PER PLATE RETICLE

Stepper Job Name = PMOS

Masks with 4 levels per plate
Saves money, time, inventory
Max Chip size 10mm by 10mm
The wafer marks can be etched to the calculated depth or created by differential oxide growth.

For example a wafer with 500nm of oxide on it can be patterned and etched with the wafer marks followed by another 500nm oxide growth resulting in a 120nm step in the silicon. One could also use LOCOS or shallow trench processes to create steps in the silicon.

Drytek Quad, Recipe ZEROETCH
Chamber3, Step 1, 100 mTorr, 200w
CF4=25, CHF3=50, O2=10sccm,
Max Etch Time = 2 min for 1300Å
BASIC OVERLAY VERNIERS

Second Level Marks on 10 µm Spaces

First Level Marks on 11 µm Spaces

Example shows alignment error of -1 µm in X and -2 µm in Y
RIT 1 µm OVERLAY VERNIERS

This picture shows perfect alignment in x and y.

Note: in this picture the lines and spaces and the outer set of marks for x and y overlay are the result of the most recent photolithography. The inner set of overlay marks are from a previous layer. Some RIT designs use the inner set of bars with the lines and spaces. Be careful when determining and specifying alignment directions. (A precise specification for example is: the 2nd layer pattern needs to shift 1µm in the –y direction (down toward wafer flat) and 0.5µm in +x direction to give correct alignment with the previous layer.)
RIT 0.5 µm OVERLAY VERNIERS
RETICLE AND WAFER ORIENTATION

Mask is loaded into Machine
In this direction

Bottom Left Corner of Die

Figure 1.1 Relationship between reticle and wafer coordinate system

Figure 1.2 shows the schematic layout of a PAS 55l
shows all the required reticle patterns.
Die should be correct reading with bottom of the chip design toward the wafer flat. Some microscopes invert the image so be careful determining directions of alignment errors. (For example: 2nd layer pattern needs to shift 1\textmu m in –y direction and 0.5\textmu m in +x direction to give correct alignment.)
BLADE POSITION CALCULATION

Note: Assume the Reticle is opaque outside the chip area. The blade opening should be a little larger than the chip size so divide by 2. For example a 5mm square chip should have blades open a little more than 2.5 mm in each direction. Pick 3 mm. Blade openings should be less than ½ step size, for 6 mm step size that is 3 mm.

\[Bu = +3 \text{ mm} \]
\[Br = +3 \text{ mm} \]
\[Bl = -3 \text{ mm} \]
\[Bd = -3 \text{ mm} \]

(0,0)
Handling of Wafers and Reticles

Material Handling

0 - Exit
1 - Exchange Wafer Carrier
2 - Remove Wafers from Machine
3 - Exchange Reticle Box
4 - Remove Reticles from Machine
5 - Inspect Reticles

- Select Option
BATCH CONTROL

Range for coherence value

Conventional Illumination
- NA=0.48 0.54 0.60
- Min 0.42 0.37 0.34
- Max 0.85 0.85 0.85

Annular
- NA=0.48 0.54 0.60

Outer
- 0.34 to 0.56 0.57 0.58

Inner
- 0.18 0.16 0.14
SSI COAT AND DEVELOP TRACK FOR 6” WAFERS
PHOTORESIST PROCESSING

DEHYDRATE BAKE/ HMDS PRIMING

HMDS Vapor Prime
140 °C, 60 sec.

COAT.RCP

SPIN COAT

OIR 620-10
Resist
3250rpm, 30 sec.

SOFT BAKE

90 °C
60 sec.

DEVELOP.RCP

DEVELOP

DI Wet
CD-26 Developer
48sec. Puddle,
30sec. Rinse,
30sec., 3750rpm
Spin Dry

POST EXPOSURE BAKE

110 °C, 60 sec.

HARD BAKE

120 °C, 60 sec.
HOMEWORK – ASML ALIGNMENT

1. What is the difference between fiducial marks and alignment marks?

2. What is the definition of alignment key offset? How is the alignment key offset, left alignment die and right alignment die (row and column) used in a stepper job?

3. How accurate can a stepper overlay images? What determines this accuracy?

4. Why are four levels placed on a single mask at RIT? What are the advantages and disadvantages of this approach? Can this be done on the ASML stepper?
COPY JOB FILES TO FLOPPY

Main Menu -> Job Definition -> View Job (click 4 times to highlight all text)
Press Copy Button (at left side of keyboard)
Open Command Window (right click somewhere on background screen)
Click on ASML
Type textedit
Press Paste button (on left side of keyboard – text should appear)
Right Click on file -> save as
Double click “Go up one Folder” (until you can’t anymore)
Click mnt
Type in a filename under save as:_____________
Click save

Remove Floppy, go to another computer, open using Wordpad