Chemical Mechanical Planarization

Dr. Richard Lane, Dr. Michael Jackson
Dr. Lynn Fuller

Webpage: http://people.rit.edu/lffeeee
Microelectronic Engineering
Rochester Institute of Technology
82 Lomb Memorial Drive
Rochester, NY 14623-5604
Tel (585) 475-2035
Fax (585) 475-5041
Email: Lynn.Fuller@rit.edu

Department webpage: http://www.microe.rit.edu

3-27-2010 lec_CMP.ppt
Chemical Mechanical Planarization
Polishing for the purpose of planarizing integrated circuit structures, and other microelectronic devices.

Chemical Mechanical Polishing
Includes traditional polishing, eg. Optics, semiconductor wafer preparation, metals
Introduction
What do we mean “to planarize” an IC?
Why do we need to planarize?
Are there other ways to planarize?
Principles of polishing and planarization
What is CMP of Integrated Circuits?
Why is CMP so great?
Copper Interconnect
References
Homework
MOORE’S LAW

The number of transistors per chip doubles every 18 months, at no cost to customers.*

The industry has kept pace with Moore’s Law:
- Transistors keep getting smaller.
- Transistors keep getting closer together.
- Transistors keep getting faster.

The result of these trends:
- Real estate on a chip is very expensive. A chip can no longer be built like a printed circuit board with wires (metal pattern) taking up most of the chip area. The patterned metal layers are placed above the chip and separated by insulators. This is called a multilevel interconnect system.
SIA ROADMAP

For each additional mask, you add another metal CMP step.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>1997</th>
<th>1999</th>
<th>2001</th>
<th>2003</th>
<th>2006</th>
<th>2009</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-GATE</td>
<td>0.25</td>
<td>0.18</td>
<td>0.15</td>
<td>0.13</td>
<td>0.10</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>CD-METAL</td>
<td>0.30</td>
<td>0.22</td>
<td>0.18</td>
<td>0.15</td>
<td>0.11</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>DRAM</td>
<td>256M</td>
<td>1G</td>
<td>2G</td>
<td>4G</td>
<td>16G</td>
<td>64G</td>
<td>256G</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>22x22</td>
<td>25x32</td>
<td>25x34</td>
<td>25x36</td>
<td>25x40</td>
<td>25X44</td>
<td>25X52</td>
</tr>
<tr>
<td># MASKS</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>24-26</td>
<td>26-28</td>
<td>28</td>
</tr>
<tr>
<td># METAL LEVELS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM</td>
<td>2-3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Microprocessor</td>
<td>4-5</td>
<td>5</td>
<td>5-6</td>
<td>6</td>
<td>6-7</td>
<td>7</td>
<td>7-8</td>
</tr>
</tbody>
</table>
PATENT ACTIVITY ON CMP

US Patents Issued, CMP Area

Number of Patents

Year

Rochester Institute of Technology
Microelectronic Engineering
The average number of metal layers on high-end ICs is 4.

§ Multilevel Interconnects required for high-density integrated circuits.
§ Build-up of patterned layers degrades planarity of the surface.
§ This is worse case. Several partial planarization techniques are in common use.
Six levels aluminum interconnect with tungsten plugs, CMP, and damascene of local tungsten interconnect for 0.18 μm gates.
WHAT TO WE MEAN, TO “PLANARIZE AN INTEGRATED CIRCUIT”?

Planarization is one or both of the following:

a. Topography smoothing:
 the conversion of abrupt, vertical steps to gradually sloping transitions.

b. Step height reduction:
 the reduction of elevation differences
SMOOTHING VS. STEP HEIGHT REDUCTION

Unplanarized Step

Smoothing, no step height reduction.

Smoothing, with step height reduction.

Degree of Planarization \[= 1 - \frac{h_2}{h_1} \]
PLANARIZATION RANGE

Short Range: \(r = 1 - 2 \, \mu m \)
\[\theta = 30 - 45 \, \text{deg.} \]

Long Range: \(r = 100 - 200 \, \mu m \)
\[\theta = 1 - 0.01 \, \text{deg.} \]

Global Planarization

Planarization Range \((r)\) = \(\frac{\text{Post-Step Height}}{\tan(\theta)}\)
WHY DO WE NEED TO PLANARIZE?

§ High density circuits

• Sub-micron features require the highest resolution imaging techniques. This implies short wavelength and high numerical aperture lenses resulting in small depth of focus. CMP provides a flat surface so small depth of focus is not an issue.

• Sub-micron devices require shallow trench isolation which requires CMP

• Sub-micron devices at high packing density require more than three levels of sub-micron interconnect wiring which requires CMP.
i-Line Stepper $\lambda = 365$ nm
NA = 0.52, $\sigma = 0.6$
Resolution = $0.7 \frac{\lambda}{NA} \approx 0.5 \mu m$
20 x 20 mm Field Size
Depth of Focus = $k_2 \frac{\lambda}{(NA)^2}$
= $0.8 \mu m$
SHALLOW TRENCH ISOLATION (FEOL)

1. Thermal Oxidation Deposit Nitride

2. Pattern and etch Nitride and oxide

3. Etch trench in silicon substrate

4. Thermal Oxidation Deposit CVD Oxide

5. CMP of oxide to Nitride polish stop

6. Chemical strip of Nitride

Nitride polish stop and its subsequent removal helps to minimize dishing in trenches.

Rochester Institute of Technology
Microelectronic Engineering
CROSS SECTION OF MULTI LAYER METAL STRUCTURE PLANARIZED BY CMP

- CMP Steps
- Thermal Oxide
- Silicon Wafer
- BPSG
- Oxide
- W plug
- Ti/TiN Barrier
- Polysilicon gate
- ILD 0
- ILD 1
- ILD 2
- M-1
- M-2
- M-3
WHAT IS PLANARIZED, SPECIFICALLY?

§ **Front end Applications** (FEOL) - Devices in the active regions of the silicon wafer, such as:

- Shallow trench isolation (STI)
- Trench capacitors
- Inter-polysilicon dielectrics

§ **Back end applications** (BEOL) - Metal and dielectric films which comprise the wiring of the millions of devices in the silicon wafer.

- Pre-metal dielectrics (doped oxides, e.g. BPSG, PSG)
- Lateral and Vertical interconnections (Al, W, Cu, Ta, Ti, TiN, doped Silicon Cu-alloys, Al-alloys)
- Intermetal dielectrics (TEOS, SOG, SiO₂, BPSG, PSG, Si₃N₄)
- Polymers (Polyimide)
METHODS OF PLANARIZATION

§ Thermal flow
§ CVD and Reflow
§ RIE Etchback of sacrificial layer
§ Spin-on-glass (SOG)
§ Variations of above

§ CMP
Why is CMP so great?

§ It is the only process which can planarize on a global scale.
 § Alternative planarization processes are affected by the pattern size and density.

§ It is an enabling process:
 § Maximizes lithographic performance.
 § Improves cleaning.
 § Reduces yield limiting defects from other processes.
 § Permits the use of difficult-to-etch metals such as Cu.
THERMAL FLOW OF BOROPHOSPHOSILICATE GLASS

As-deposited

CVD - BPSG

After thermal flow

Metal
PLANARIZATION BY REFLOW OF DOPED GLASS*

After deposition of doped glass by CVD

Local planarization after reflow of doped glass reflow does not provide global planarization.

*PSG, BPSG, or BSG
FLOW AND SACRIFICIAL ETCHBACK

Thermally flowed B_2O_3 or as-deposited photoresist applied as a sacrificial layer to be etched by RIE

Sacrificial Layer (B_2O_3 or Resist)

Planarized surface after RIE etchback

Final surface after etching
NON-SACRIFICIAL PLANARIZING LAYERS

As-spun surface
Surface after 30% curing shrinkage

Spin-on Glass (SOG)

CVD SiO$_2$

Metal

SOG does not provide global planarization
WHAT IS CHEMICAL MECHANICAL PLANARIZATION?

§ CMP

• To flatten the surface of an integrated circuit by using a polishing process, i.e., by rubbing with a pad and slurry to remove the high regions of the circuit.

• High regions on the circuit should be removed by an equal amount, regardless of their area. Removal should be uniform across the whole wafer (many circuits).

• Removal must occur without causing damage to the circuit, or the wafer.
WHAT IS LAPPING and POLISHING?

Lapping –
- To planarize or to create desired shape or dimension.
- To produce a uniformly abraded surface with known degree of sub-surface damage (~1/4 of grit size)
- Slurry of water and 8-micrometer alumina grit.
- Cast iron lapping plates, double side lapping produces flatness and parallelism < 2 µm.
- Typical removal, 50 µm per side.

Polishing –
- To remove residual damage from lapping
- To produce no new damage
- To create a microscopically smooth surface
- Does not change the shape of the surface
- Gentle rubbing with a soft pad saturated with polishing slurry (CeO2, Fe2O3, ZrO2, SiO2). It involves both a chemical and a mechanical component. At pH=10.5
SILICON POLISHING VS IC PLANARIZATION

POLISHING

- Lapped surface
- Subsurface damage
- Monocrystalline silicon

PLANARIZATION

- Device region
- Patterned surface, Pad may contact two materials.
- Metal
- Oxide
- Silicon

Rochester Institute of Technology
Microelectronic Engineering
CMP TOOL MANUFACTURERS

- Applied Materials
- Cranfield Precision
- Ebara
- Fujikoshi
- Lapmaster
- Mitsubishi
- Nutool
- Okimoto
- Peter Wolters
- Presi
- Sony
- Speedfam/IPEC
- Strasbaugh
- Toshiba

Rochester Institute of Technology
Microelectronic Engineering
POST CMP CLEAN TOOLS

Tools
- Dai Mippon Screen (DNS)
- Oliver Design
- OnTrak Systems (Lamb)
- Solid State Equipment
- Speedfam/IPEC
- Sumitomo Metals
- Toshiba

PVA Brush Rollers
- Cupps Industrial
- Kanebo
- Merocel
- Syntax
- Universal Photronics
METROLOGY TOOLS

MONOCHROMATOR & DETECTOR

WHITE LIGHT SOURCE

OPTICS

3000 Å OXIDE

λ

ADE
Bio-Rad
Mamamatsu
Hitachi
Horiba
KLA/Tencor
Matec
Nanometrics
Rudolph Instruments
Speedfam/IPEC
Topcon
SURFACE PROFILOMETER

1,000 Å < Max < 1,000,000 Å
Impregnated – non woven polyester base, saturated with polyurethane which binds the base together when cured. Pad is abrasively buffed to condition it for use. Range of hardness and densities are available.

Cast – foamed polyurethane is cast in molds and cross-linked, after which it is sliced into sheets from 0.020 to 1.25 inches thickness. A wide range of density and hardness is available.

Coated – a non woven polyester base is coated with a polyurethane formulation which forms a skin layer which is abrasively buffed before use. Often used as a final cosmetic polish after stock removal with cast or impregnated pads.
PADS

3M
Cabot
Freudenberg
Fujibo
Kanebo
Rodel
Teijin Mills
Universal Photonics
STACKED PAD

Hard top pad

Resilient bottom pad

Metal platen

Hard upper pad reduces dishing while compressible lower pad conforms globally to the wafer surface, improving uniformity.
PAD CONDITIONING

Purpose
- to help maintain stability of removal rate in CMP
- To maintain long pad life
- To maintain removal rate uniformity within wafer
- Removes imbedded and caked debris in pad surface
- Exposes uniform pad material
- Abrades pad surface
- Maintains planar pad surface

Technique
- A diamond plated disc is applied to the pad using a prescribed downward force and rotation program, in the presence of water
SLURRIES

Metals
Colloidal alumina and ferric nitrate, low pH

Weak oxide film is formed using MnO2 based polishing agent, which is removed with MnO2 mechanical action.

Oxides
Colloidal Silica (sub micron particle size) in water with KOH or NH4OH, pH of 10.5

Cerium Oxide CeO2 (sub micron particle size), High Ph

Zirconium oxide
SLURRY MANUFACTURERS

Cabot
EKC Technologies
Fujimi
Intersurface Dynamics
Praxair
Rodel
Transelco/Ferro
Universal Photonics
FACTORY STI PROCESS (FACTSTI)

- Carrier speed: 30 RPM
- Platen speed: 100 RPM
- Without back pressure
- 8 PSI down force (36 PSI on the gauge)
- Slurry (made for STI, see pages below)
- Slurry flow rate (60 mL/min)
- Pad conditioning: before every run
- Temperature: 80°C
- Polishing time: 2min 30 sec for 6500A oxide

After 2.25 minutes of Polishing
Clear almost every die
Even edge die
(Depends on Pattern Density)
1/05/06 Order:
N-2350-P Nalco 2350, 5 gal pail $166 each, Mfg by Rohm and Haas,
Silica, 70-100nm particle size, weight % 28, KOH, pH 11.4-12.4

R-10027556 Klebosol 1501-50 Colloidal Silica 5 gal pail $255 each,
Mfg AZ Electronic Materials, Clariant’s Klebosol line of silica
slurries, 50nm particles, KOH pH 10.9 50% solids

R-10087555 EXP CELEXIS CX94S Single Component Slurry, 20Liter pail $235
each, Mfg by Rohm and Haas Ceria 20nm particles, STI, pH ~7
Pad saturated with slurry.
Polishing pressure greatest on small, elevated features (active).
Pad may contact larger low areas (large field regions) called dishing.
PRESTON’S EQUATION

Removal rate is proportional to pressure and velocity:

\[R \propto S \frac{F}{A} \]

or:

\[R = Kp S \frac{F}{A} \]

in which:
- \(R \) = removal rate
- \(S \) = relative velocity
- \(F \) = Force on work piece
- \(A \) = area in contact with pad.
- \(Kp \) = Preston coefficient

Volume removal: \(RA = Kp S F \)

Many polishing processes obey this relationship fairly well, however it ignores any chemical effects.

Preston, F., (1927)
POLISH RATE VS. PATTERN DENSITY

Volumetric rate: \(RA = K_p F S \)

- **Blanket Polishing**
 - Area = Wafer area

- **Patterned polishing. No pad contact between features**
 - Area = pattern area

- **Patterned polishing. Some pad contact between features.**
 - Area = ?
PARAMETERS THAT AFFECT REMOVAL RATE

Slurry Chemicals
- pH
- Buffering agents
- oxidizers
-complexing agents
- concentration
- dielectric constant

Slurry Abrasive
- type
- size
- concentration
- pH
- suspension stability

Slurry Flow Rate

Films being Polished

Temperature
(5X removal rate/ 20 °C)

Downward Pressure

Platen Speed

Carrier Speed

Pattern Geometries
- Feature Size
- Pattern Density

Pad Type
- fiber structure
- pore size
- hardness
- elastic and shear modulus
- thickness
- embossing or perforations
- conditioning
- aging effects
- chemical durability

Wafer size
Change and Effect

Increase pressure – increase removal rate, degrade surface finish
Increase carrier speed – increase removal rate, degrade uniformity
Increase platen speed – increase removal rate, degrade uniformity
Increase slurry flow – decrease removal rate, improve surface finish
SHALLOW TRENCH ISOLATION (STI)

4000 Å STI Field Oxide

6000 Å LOCOS Field Oxide

STI reduces topology
Eliminates Bird’s Beak
AFTER LTO TRENCH FILL PRIOR TO CMP

Substrate 10 ohm-cm

Fill 4000 Å trench with
Deposit 6000 Å TEOS

Recipe A6-FAC 0.6M TEOS
390 °C, 60 sec

P-well Implant

N-well Implant
CMP ENDPOINT MEASUREMENT

Nanospec can not measure stack of Oxide on Nitride on Oxide. So Measure (Nanospec) Oxide in Trench at start ~ 6000Å Step Height using Alpha Step of ~6000 Å Endpoint Should give Oxide in Trench of 6000Å and Step Height of zero and Nanospec of Nitride on Oxide in Active area should be ~1000Å
After CMP

Substrate 10 ohm-cm

P-well

N-well

Rochester Institute of Technology
Microelectronic Engineering
DISHING AND TILES

Dishing: large area becomes recessed especially with over polishing

Multiple small dummy features (tiles) are used to reduce Dishing.
Synopsys, Inc.
CATS Software for transcription of CAD design files into readable e-beam and laser formats.
Preparing data files for mask making
TILING FOR RIT’S ADV-CMOS PROCESS STI LEVEL

COMPACT NO
TILE ONLY NO
TILE SHAPE RECTANGLE
TILE SIZE 50,25
DILE DELTA 75,50
TILE CLEAR 50,50
TILE SHIFT 25,0

Sizes are in µm at the mask

Canon PA mark

Ring oscillator
REMOVE TILING NEAR ALIGNMENT MARKS

Canon PA mark
We have made great progress in doing the CMP for our advanced CMOS process shallow trench isolation (STI). The progress has been made through:

1. Getting the Westech CMP tool working correctly.
2. Getting a slurry especially made for STI that removes oxide and stops on nitride.
3. Adding tiles (dummy features) to the mask area outside of the active regions during computer aided transcription CATS prior to maskmaking. (and using tile exclusion design layer)
4. Paying attention to film stack in streets between die.
CONVENTIONAL PROCESSING TECHNOLOGY FOR MULTILEVEL METALLIZATION

1. Previous metal lines
 Previous metal vias

2. Deposit and pattern metal for via plugs

3. Deposit insulating film

4. CMP insulating film

5. Repeat steps 2-5 for next level (metal lines)
INLAID METAL (DAMASCENE) TECHNOLOGY

1. Previous metal lines
 Previous metal vias

2. Deposit Dielectric and etch vias

3. Deposit blanket metal

4. CMP metal

5. Repeat steps 2-5 for next level of metal lines.

Rochester Institute of Technology
Microelectronic Engineering
• Corrosion of the metal by the slurry (chemical)
• Passivation (self-limiting corrosion due to surface protective layer, usually oxide)
• Removal of the passivation from the high regions, from the action of the pad/slurry attrition.
• Reformation of the passivation layer on the exposed metal surfaces.
METAL POLISHING SCHEMATIC

(a) Initial stage, after contact with the slurry and the resultant formation of a passivation layer, usually a metal oxide.

(b) Final stage of polishing. Pad is in contact with the polish stop/barrier layer.
DISHING AND EROSION

Dishing: the faster polishing material becomes recessed especially with over polishing

Erosion: Multiple small features polish faster than large features. As the amount of fast polishing material increases, erosion increases.
RESULT OF W-CMP EROSION

W vias, incomplete etch

Planarized dielectric

Local interconnects

Metal 1 TEOS W - plug

Dishing adds demands on deep via etching, plus the depth of focus problem
DESIGN IMPLICATIONS OF METAL DISHING AND EROSION

§ Large metal features will dish severely
§ Oxide supporting structure will reduce dishing; therefore dummy features are effective.
§ The more oxide supporting features, the less erosion.
§ Trade-off between metal conductivity and planarity.
§ Problem areas:
 § Alignment marks, test structures, power lines, layout complexity.
COPPER INTERCONNECTS

Advantages:

Cu has excellent conductivity 1.7 $\mu\Omega$-cm (Al: 3.0 $\mu\Omega$-cm)
Cu = 10x electromigration resistance compared to Al.
Lower manufacturing cost (assuming dual Damascene)

Disadvantages:

Cu diffuses fast, poisons silicon, requires good barrier layer.
No proven plasma etching process, requires damascene process.
CVD deposition is difficult, needs alternative dep. process.
“Next year, the use of copper will be fairly widespread”
Singer, P., June (1998)

Cu bulk fill, (electroplated)

Cu seed layer, (PVD)

Ta/TaN barrier (PVD)

Dielectric

Another promising barrier layer is tungsten nitride.
1. Deposit insulator, cap with nitride etch stop. Pattern nitride for studs, deposit second layer of insulator, apply resist.

2. Etch insulator down to substrate, strip resist.

3. Deposit metal, filling all features.

4. CMP of metal, stop at dielectric.

Dual approach requires 20-30% fewer steps than traditional subtractive patterning.
CU DEPOSITION METHODS

§ PVD: Step coverage limited, especially for sub-micron, high aspect ratio features.

§ CVD: Conformal, uses metal-organic precursor, development required, high cost. May be required for future smaller geometries.

§ Electroplating: Promising, good conformality and filling properties. Requires seed layer deposited by PVD. Not a commonly used method in IC processing.

§ Electroless plating: Still requires a seed layer, (conductive material)
ENDPOINT DETERMINATION METHODS

Calculated Time from Measured Rate
Frictional Force Change – Motor Current
Temperature of Pad
Chemical Indicator
Electrochemical Potential
In-situ Thickness Measurement
Polish Stop Layers, Selectivity
SIGNIFICANCE OF CMP

§ Current DRAMs use 3-4 layers of metal.
 § (There are two polishes at each level.)
§ Average high-end ICs use four layers of metal
 § Intel up to 6 layers in 1996.
§ Copper technology anticipates significantly more metal levels, but only one polish per level.
 § (Assuming dual damascene process.)
§ CMP is widely accepted now, after the industry overcame the old paradigm of always keeping the wafer clean.
§ CMP adds cost, ($7-10 per wafer) but its ability to enhance other processing steps while improving circuit performance results in a significant overall benefit.

REFERENCES

HOMEWORK - CMP

Visit your CMP area or interview a CMP expert and determine:
1. Type of equipment used.
2. How endpoint is determined.
3. What pads and slurry are used.
4. When are the pads replaced.
5. What different processes are done. (e.g. what is different when CMP oxide, CMP metal, etc.)