Surface Analysis

Dr. Lynn Fuller

Dr. Fuller’s Webpage: http://people.rit.edu/lfhee
Microelectronic Engineering
Rochester Institute of Technology
82 Lomb Memorial Drive
Rochester, NY 14623-5604
Tel (585) 475-2035
Fax (585) 475-5041
Email: Lynn.Fuller@rit.edu
MicroE webpage: http://www.microe.rit.edu
Introduction
Scanning Electron Microscopy (SEM)
Transmission Electron Microscopy (TEM)
Atomic Force Microscopy (AFM)
Energy Dispersive Analysis of x-rays (EDAX)
Auger Electron Spectroscopy
X-ray Fluorescence Spectroscopy (XPS)
Secondary Ion Mass Spectroscopy (SIMS)
Capacitance Voltage Measurements
Surface Charge Analyzer
Surface analysis refers to a collection of techniques to get information about the chemical or physical nature of a surface. (few µm)
Surface Analysis

LEO EVO 50

Rochester Institute of Technology
Microelectronic Engineering
AMRAY 1830 1 & 2
Surface Analysis

SCANNING ELECTRON MICROSCOPE (SEM)

- Primary Electron Beam
- Secondary Electrons, 20Å
- Auger Electrons, 10Å
- Sintillator (Phosphor Coated)
- Specimen Current Detector

- 1 µm
- Back scattered Electrons
- Characteristic X-rays
- X-Ray Continuum

- Photo multiplier
- Tube (low work Function)

- +200 V
- -1000 V
- -2000 V
- -3000 V
- -4000 V

Rochester Institute of Technology
Microelectronic Engineering

© January 31, 2011 Dr. Lynn Fuller
Surface Analysis

TRANSMISSION ELECTRON MICROSCOPE

Primary Electron Beam

Specimen Support Grid

Specimen < 1 µm

Sintillator (Phosphor Coated)

+200 V

-3000 V

-1000 V

-4000 V

-2000 V

Photo multiplier Tube (low work Function)

R

Vout

Rochester Institute of Technology
Microelectronic Engineering

© January 31, 2011 Dr. Lynn Fuller
LEO EVO 50 SEM & EDAX
SEM EXAMPLES
SEM WITH FOCUSED ION BEAM (FIB)
FIB allows cross-section SEM images to be made at any point by cutting a trench with a focused beam of argon ions.
Piezoelectric Motors Scan Tip in X and Y, Electronics control Z such that the Tunneling Current I is Constant. The Control Voltage for Z is a Measure of Surface Topology.
ATOMIC FORCE MICROSCOPE (AFM)
ATOMIC FORCE MICROSCOPE (AFM)

- **Standard**
 - Sharp Apex
 - Slender
 - Long
 - Used in Contact mode

- **CD Mode (Conical and Flared)**
 - Flared tip able to measure undercut sidewalls
 - Used in non-contact mode
Surface Analysis

ENERGY DISPERSIVE ANALYSIS OF X-RAYS (EDAX)

- Auger Electrons 10Å
- Primary Electron Beam
- Secondary Electrons, 20Å
- Back scattered Electrons
- Characteristic X-rays
- X-Ray Continuum

1 µm
ENERGY DISPERSIVE ANALYSIS OF X-RAYS (EDAX)

Iron

Atomic Number 26

En = -13.6 \(Z^2/n^2 \)

E1 = -9194 eV

E2 = -2298 eV

E3 = -1022 eV

\[E = h \nu \quad \text{or} \quad \lambda = \frac{h}{E} \]

x-ray

Notation: K x-rays are associated with transitions to 1st shell, L x-rays to the 2nd shell. \(\alpha \) x-rays are between adjacent shells, B x-rays are two shells apart, etc.
Crystal Detector

Cryogenic Semiconductor Detector

Liquid Nitrogen Cooled Semiconductor Detector
EDAX

Phoenix microanalyzer including EDAX III acquisition electronics and PC.

Rochester Institute of Technology
Microelectronic Engineering
Spectrum of silicon oxynitride acquired at 5 kV.
Failed RF Pin: 40X

Failed RF Pin: 320X
Point A & B Analyzed using EDAX
MLK MODE SELECT ELEMENT
LK Z=30 ZN
PR=S 319 SEC 0 INT
V=4096 H=20KEV 1:1 AQ=20KEV 1H

MLK MODE SELECT ELEMENT
ML Z=80 HG
PR=S 150 SEC 0 INT
V=4096 H=20KEV 1:1 AQ=20KEV 1H

MLK MODE SELECT ELEMENT
LK Z=29 CU
PR=S 319 SEC 0 INT
V=4096 H=20KEV 1:1 AQ=20KEV 1H

MLK MODE SELECT ELEMENT
MLK Z=41 NB
PR=S 150 SEC 0 INT
V=4096 H=20KEV 1:1 AQ=20KEV 1H
Surface Analysis

AUGER ELECTRON SPECTROSCOPY

Auger Electrons 10Å
Primary Electron Beam
Secondary Electrons, 20Å
Back scattered Electrons
Characteristic X-rays
X-Ray Continuum

1 µm

Rochester Institute of Technology
Microelectronic Engineering

© January 31, 2011 Dr. Lynn Fuller
Page 24
AUGER
Auger analysis showed an aluminum particle contaminated the wafer.
Surface Analysis

AUGER

- Simultaneous Process
- Ionization of Core Electron
- Upper level electron falls into lower energy state
- Energy release from second electron allows Auger electron to escape
- The illustrated LMM Auger electron energy is ~423 eV (E_{Auger} = E_{L2} - E_{M4} - E_{M3})

http://www.cea.com/cai/augtheo/process.htm
- Chart of principal Auger electron energies
- Dots indicate electron energies for principal Auger peaks for each element

http://www.ce.a.com/cai/augtheo/energies.htm
ESCA or XPS

Electron Spectroscopy for Chemical Analysis (ESCA) or X-ray Photo Electron Spectroscopy (XPS)
The Quadrupole Filter has voltages such that down the center there is a zero potential equipotential surface. Only ions of a certain mass make it all the way to the photomultiplier tube. The voltage applied to the filter at radio frequency and DC selects the mass.
RGA
Apply a DC voltage (V) to the capacitor and measure the capacitance. High frequency and low frequency capacitance measurement techniques are available.
CV MEASUREMENTS

N-Type Silicon

- Low Frequency
- Depletion
- Inversion
- High Frequency

P-Type Silicon

- Low Frequency
- Inversion
- Accumulation
- High Frequency

V_T, V_{FB}, C_{min}, C_{FB}
Surface Analysis

SCA

Signal Amplifier
High Voltage Amplifier
Light Controller and Modulator
Data Acquisition
Computer

Capacitive Pickup
Guard Electrode

LED Light Source

Silicon
Oxide

Rochester Institute of Technology
Microelectronic Engineering

© January 31, 2011 Dr. Lynn Fuller
Surface Analysis

SCA

P-type Wafer

Qind

Inversion

Wd

WT

Wmid gap

Accumulation

WFB

N-type Wafer

Accumulation

Wd

WT

Wmid gap

Inversion

WFB

Qind
Login: FACTORY
Password: OPER
<F1> Operate
<F1> Test Place the blank spot in middle of wafer on center of the stage
Select (use arrow keys, space bar, page up, etc)
 PROGRAM = FAC-P or FAC-N
 LOT ID = F990909
 WAFER NO. = D1
 TOX = 463 (from nanospec)
<F12> start test and wait for measurement
<Print Screen> print results
<F8> exit and log off
<ESC> can be used anytime, but wait for current test to be completed
EXAMPLE OF SCA OUTPUT MEASURED AT RIT

Rochester Institute of Technology
Microelectronic Engineering

© January 31, 2011 Dr. Lynn Fuller
EXAMPLE OF SCA OUTPUT MEASURED AT RIT
REFERENCES

3. EDAX Inc., 91 McKee Drive, Mahwah, NJ 07430-9978, Tel (201) 529-3156

1. Calculate the wavelength of the K_α and L_B x-ray for copper.
2. Explain how SIMS gives doping profiles.
3. Why can’t Auger and a ESCA give doping profiles.