§4.3 – Monotonic Functions and the First Derivative Test

Recall from Section 1.1
Definition: Let \(f \) be a function and \(I \) an interval contained in the domain of \(f \).

 (i) \(f \) is increasing on \(I \) if \(f(x_1) < f(x_2) \) whenever \(x_1 < x_2 \) in \(I \).

 (ii) \(f \) is decreasing on \(I \) if \(f(x_1) > f(x_2) \) whenever \(x_1 < x_2 \) in \(I \).

Recall from Section 4.2
The Mean Value Theorem (MVT): If \(f \) is continuous on \([a,b]\) and differentiable on \((a,b)\), then there exists a number \(c \) in \((a,b)\) such that

\[
 f'(c) = \frac{f(b) - f(a)}{b - a}.
\]

Increasing/Decreasing Test (IDT): Let \(f \) be a function defined on \([a,b]\).

 (i) If \(f'(x) > 0 \) for all \(x \in (a,b) \), then \(f \) is increasing on \([a,b]\).

 (ii) If \(f'(x) < 0 \) for all \(x \in (a,b) \), then \(f \) is decreasing on \([a,b]\).

Example 1: Let \(f(x) = 4x^4 - 8x^2 \). Find the intervals on which \(f \) is …

 (a) … increasing.

 (b) … decreasing.
The First Derivative Test (FDT): Let \(c \) be a critical number of a continuous function \(f \).

(i) If \(f' \) changes from positive to negative at \(c \), then \(f \) has a local max at \(c \).

(ii) If \(f' \) changes from negative to positive at \(c \), then \(f \) has a local min at \(c \).

(iii) If \(f' \) does not change signs at \(c \) (that is, \(f' \) is positive on both sides of \(c \) or negative on both sides of \(c \)), then \(f \) has no local extremum at \(c \).

Example 2: Given \(f(x) = x^{1/3}(x + 4) \).

(a) Find intervals of increase or decrease.

(b) Find the \(x \) and \(y \) coordinates of all local mins/maxs, if any.

Example 3: Given \(f(x) = \frac{1}{1 + e^{-x}} \).

(a) Find all vertical and horizontal asymptotes.

(b) Find the intervals on which \(f \) is increasing/decreasing.

(c) Find the \(x \) and \(y \) coordinates of all local mins/maxs, if any.
§4.3 – Monotonic Functions and the First Derivative Test

Recall from Section 1.1

Definition: Let \(f \) be a function and \(I \) an interval contained in the domain of \(f \).

(i) \(f \) is increasing on \(I \) if \(f(x_1) < f(x_2) \) whenever \(x_1 < x_2 \) in \(I \).

(ii) \(f \) is decreasing on \(I \) if \(f(x_1) > f(x_2) \) whenever \(x_1 < x_2 \) in \(I \).

A function that is either increasing or decreasing on \(I \) is called monotonic on \(I \).

Recall from Section 4.2

The Mean Value Theorem (MVT): If \(f \) is continuous on \([a,b]\) and differentiable on \((a,b)\), then there exists a number \(c \) in \((a,b)\) such that

\[
 f'(c) = \frac{f(b) - f(a)}{b - a}.
\]

Increasing/Decreasing Test (IDT): Let \(f \) be a function defined on \([a,b]\).

(i) If \(f'(x) > 0 \) for all \(x \in (a,b) \), then \(f \) is increasing on \([a,b]\).

(ii) If \(f'(x) < 0 \) for all \(x \in (a,b) \), then \(f \) is decreasing on \([a,b]\).

Example 1: Let \(f(x) = 4x^4 - 8x^2 \). Find the intervals on which \(f \) is ...

(a) ... increasing.

(b) ... decreasing.

The First Derivative Test (FDT): Let \(c \) be a critical number of a continuous function \(f \).

(i) If \(f' \) changes from positive to negative at \(c \), then \(f \) has a local max at \(c \).

(ii) If \(f' \) changes from negative to positive at \(c \), then \(f \) has a local min at \(c \).

(iii) If \(f' \) does not change signs at \(c \) (that is, \(f' \) is positive on both sides of \(c \) or negative on both sides of \(c \)), then \(f \) has no local extremum at \(c \).
Example 2: Given $f(x) = x^{1/3} (x + 4)$.

(a) Find where f is increasing/decreasing.

(b) Find the x and y coordinates of all local mins/maxs, if any.
Example 3: Given $f(x) = \frac{1}{1+e^{-x}}$.

(a) Find all vertical and horizontal asymptotes.
(b) Find the intervals on which f is increasing/decreasing.
(c) Find the x and y coordinates of all local mins/maxs, if any.