
1

Steps in Creating a Parallel Program

4 steps:
Decomposition, Assignment, Orchestration, Mapping
• Done by programmer or system software (compiler, runtime, ...)
• Issues are the same, so assume programmer does it all explicitly

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

+ Scheduling

Parallel Algorithm

Find max. degree of
Parallelism (DOP)
or concurrency
(Dependency analysis/
graph) Max. no of Tasks

Processes

Tasks

How many tasks?
Task (grain) size?

Communication
Abstraction

Tasks  Processes
Processes  Processors

+ Execution Order
(scheduling)

Fine-grain Parallel
Computations

 Tasks

Fine-grain Parallel
Computations

1CMPE655 - Shaaban
lec # 4 Spring 2018 2-15-2018

(PCA Chapter 2.3)

From last lecture

Max DOP

Computational
Problem

1 2 3 4

1 2 3 4

Vs. implicitly by parallelizing compiler

At or above

Task

2

Example Motivating Problem:
Simulating Ocean Currents/Heat Transfer ...

• Model as two-dimensional “n x n” grids
• Discretize in space and time

– finer spatial and temporal resolution => greater accuracy
• Many different computations per time step, O(n2) per grid.

– set up and solve linear equations iteratively (Gauss-Seidel) .
• Concurrency across and within grid computations per iteration

– n2 parallel computations per grid x number of grids

(a) Cross sections (b) Spatial discretization of a cross section

n

n
Maximum Degree of
Parallelism (DOP) or
concurrency: O(n2)
data parallel
computations per grid
per iteration

A[i,j] = 0.2  (A[i,j] + A[i,j – 1] + A[i – 1, j] +
A[i,j + 1] + A[i + 1, j])

Expression for updating each interior point:

2D Grid

n
grids

Total
O(n3)
Computations
Per iteration
n2 per grid
X n grids

From last lecture

(PCA Chapter 2.3) More reading: PP Chapter 11.3 (Pages 352-364)

n2 points to update

When one task updates/computes one grid element

Synchronous iteration

n x n Grid

i.e. Grid Computations

Updated
Value

3

Solution of Linear System of Equation By Synchronous Iteration

Setup

Iterate over (update)
all interior n2 points

O(n2)

Converged?

A[i,j] = 0.2  (A[i,j] + A[i,j – 1] + A[i – 1, j] +
A[i,j + 1] + A[i + 1, j])

Expression for updating each interior point:

One
Iteration
Or
Sweep

Find Error (Global Difference)
Is Error < Tolerance Limit ? No

Iterate Again

Yes

Done

Initialize all points

(Threshold)

Iterations are sequential – Parallelism within an iteration O(n2)

For one 2D Grid (n x n = n2 points)

Or maximum number
of iterations is reached

Point Update Expression

New or updated point

4

Parallelization of An Example Program
Examine a simplified version of a piece of Ocean simulation

• Iterative (Gauss-Seidel) linear equation solver

Illustrate parallel program in low-level parallel language:
• C-like pseudo-code with simple extensions for parallelism
• Expose basic communication and synchronization primitives that

must be supported by parallel programming model.

(PCA Chapter 2.3)

One 2D Grid, n x n = n2 points (instead of 3D – n grids)

• Data Parallel
• Shared Address Space (SAS)
• Message Passing

Three parallel programming models targeted for orchestration:

Synchronous iteration

5

(One) 2D Grid Solver Example

• Simplified version of solver in Ocean simulation
• Gauss-Seidel (near-neighbor) sweeps (iterations) to convergence:

– Interior n-by-n points of (n+2)-by-(n+2) updated in each sweep (iteration)
– Updates done in-place in grid, and difference from previous value is

computed
– Accumulate partial differences into a global difference at the end of every

sweep or iteration
– Check if error (global difference) has converged (to within a tolerance

parameter)
• If so, exit solver; if not, do another sweep (iteration)
• Or iterate for a set maximum number of iterations.

A[i,j] = 0.2  (A[i,j] + A[i,j – 1] + A[i – 1, j] +
A[i,j + 1] + A[i + 1, j])

Expression for updating each interior point:

Computation = O(n2)
per sweep or iteration

n2 = n x n
interior grid points

n + 2 points

n + 2 points

Boundary
Points
Fixed

2D (one grid) not 3D

1

2

3

4

2D
n x n
Grid

A = Matrix
of points n x n

Updated Point

Iterate

j

i

6

1. int n; /*size of matrix: (n + 2-by-n + 2) elements*/
2. float **A, diff = 0;

3. main()
4. begin
5. read(n) ; /*read input parameter: matrix size*/
6. A  malloc (a 2-d array of size n + 2 by n + 2 doubles);

7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, done = 0;

14. float diff = 0, temp;

15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize maximum difference to 0*/
17. for i  1 to n do /*sweep over nonborder points of grid*/
18. for j  1 to n do

19. temp = A[i,j]; /*save old value of element*/
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +

21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);

23. end for

24. end for

25. if (diff/(n*n) < TOL) then done = 1;

26. end while

27. end procedure

Pseudocode, Sequential Equation Solver

{Sweep O(n2)
computations

Done?

Iterate until
convergence

TOL, tolerance or threshold

Initialize
grid points

Call equation
solver

i.e one iteration

Old value

Setup

Update
Points

diff = Global Difference

A = Matrix of n x n points

New value

New value

7

Decomposition

• Concurrency O(n) along anti-diagonals, serialization O(n) along diagonal
• Retain loop structure, use pt-to-pt synch; Problem: too many synch ops.
• Restructure loops, use global synch; load imbalance and too much synch

•Simple way to identify concurrency is to look at loop iterations
–Dependency analysis; if not enough concurrency is found, then
look further into application

•Not much concurrency here at this level (all loops sequential)
•Examine fundamental dependencies, ignoring loop structure

Parallelism or
Concurrency along
anti-diagonals O(n)Serialization

along diagonals O(n)

New
(updated)

Old
(Not updated yet)

i.e using barriers along diagonals

Start

1

1

2

3

2

A[i,j] = 0.2  (A[i,j] + A[i,j – 1] + A[i – 1, j] +
A[i,j + 1] + A[i + 1, j])

Expression for updating each interior point:

Or

j

j

i i

How?
Maximum

8

Exploit Application Knowledge

• Different ordering of updates: may converge quicker or slower
• Red sweep and black sweep are each fully parallel:
• Global synchronization between them (conservative but convenient)
• Ocean uses red-black; here we use simpler, asynchronous one to illustrate

– No red-black sweeps, simply ignore dependencies within a single sweep
(iteration) all points can be updated in parallel DOP = n2 = O(n2)

– Sequential order same as original.

Red point

Black point

•Reorder grid traversal: red-black ordering
Maximum Degree of parallelism = DOP = O(n2)
Type of parallelism: Data parallelism

One point update per task (n2 parallel tasks)
Computation = 1
Communication = 4
Communication-to-Computation ratio = 4

For PRAM with O(n2) processors:
Sweep = O(1)
Global Difference = O(log2n2)
Thus: T = O(log2n2)

Two parallel sweeps
Each with parallel n2/2 points updates

Decomposition:

Iterations may converge slower than red-black ordering
i.e. Max Software DOP = n2 = O(n2)

j

i

Per Iteration

9

Decomposition Only

• Decomposition into elements: degree of concurrency n2

• To decompose into rows, make line 18 loop sequential;
degree of parallelism (DOP) = n

•for_all leaves assignment left to system
– but implicit global synch. at end of for_all loop

15. while (!done) do /*a sequential loop*/
16. diff = 0;
17. for_all i  1 to n do /*a parallel loop nest*/
18. for_all j  1 to n do
19. temp = A[i,j];
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. diff += abs(A[i,j] - temp);
23. end for_all
24. end for_all
25. if (diff/(n*n) < TOL) then done = 1;
26. end while

Parallel
PRAM O(1)

Global Difference
PRAM O(log2n2)

Task = update one grid point

Coarser Grain:
n parallel tasks each update a row
Task = grid row
Computation = O(n)
Communication = O(n) ~ 2n
Communication to Computation
ratio = O(1) ~ 2

Degree of Parallelism (DOP)

The “for_all” loop construct imply parallel loop computations

Fine Grain:
n2 parallel tasks
each updates one
element

DOP
= O(n2)

Point
Update

DOP
= O(n2)

Task = update one row of points

O(n2)
Parallel
Computations
(tasks)

Task =
Update one grid point

Task = One row

for_all = in parallel

10

Assignment: (Update n/p rows per task)

• Dynamic assignment (at runtime):
– Get a row index, work on the row, get a new row, and so on

• Static assignment into rows reduces concurrency (from n2 to p)
– concurrency (DOP) = n for one row per task C-to-C = O(1)
– Block assign. reduces communication by keeping adjacent rows together

• Let’s examine orchestration under three programming models:

i
p

P0

P1

P2

P4

•Static assignments (given decomposition into rows)
–Block assignment of rows: Row i is assigned to process
–Cyclic assignment of rows: process i is assigned rows i, i+p, and
so on p = number of processors < n

p tasks or processes
Task = updates n/p rows = n2/p elements
Computation = O(n2/p)
Communication = O(n)
Communication-to-Computation

ratio = O (n / (n2/p)) = O(p/n)

Lower C-to-C ratio is better

Block or strip
assignment
n/p rows per task

p = number of processors
(tasks or processes)

p = number of processes or processors

1- Data Parallel 2- Shared Address Space (SAS) 3- Message Passing

~ 2n (2 rows)

p tasks
Instead of n2

i.e n2/p points per task

Why Block
Assignment

i.e Task Assignment

In one task

Not needed here (computation is predictable)

11

Data Parallel Solver
1. int n, nprocs; /*grid size (n + 2-by-n + 2) and number of processes*/
2. float **A, diff = 0;

3. main()
4. begin
5. read(n); read(nprocs); ; /*read input grid size and number of processes*/
6. A  G_MALLOC (a 2-d array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve(A) /*solve the equation system*/
11. float **A; /*A is an (n + 2-by-n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float mydiff = 0, temp;
14a. DECOMP A[BLOCK,*, nprocs];
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = 0; /*initialize maximum difference to 0*/
17. for_all i  1 to n do /*sweep over non-border points of grid*/
18. for_all j  1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. mydiff += abs(A[i,j] - temp);
23. end for_all
24. end for_all
24a. REDUCE (mydiff, diff, ADD);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

Block decomposition by row

Sweep/Iteration:
T = O(n2/p)

Add all local differences (REDUCE)
cost depends on architecture
and implementation of REDUCE
best: O(log2p) using binary tree reduction
Worst: O(p) sequentially

}
O(n2/p + log2p) T(iteration) O(n2/p + p)

nprocs = number of processes = p

In
 P

ar
al

le
l

n/p rows per processor

Setup/Initialize Points

diff = Global Differencemydiff = Local Difference

A = Matrix of n x n points

New
Value

12

Shared Address Space Solver

• Row Assignment controlled by values of variables used as loop
bounds and individual process ID (PID)

Single Program Multiple Data (SPMD)

Sweep

Test Convergence

Processes

Solve Solve Solve Solve

Still MIMD

Setup

Barrier 1

Barrier 2

Barrier 3

Not Done?
Sweep again

(iteration)

n/p rows or n2/p points
per process or task

i.e Which n/p rows to update for a task or process with a given process ID (PID)

Done ?

All processes test for convergence

SAS

As shown next slide

p tasks

i.e iterate

- Array of grid points
“A” in shared memory

- Diff = Global Difference
or Error

also in shared memory

Initialize Points

Lock () ……. . …. ….. …… Unlock ()

For process

13

1. int n, nprocs; /*matrix dimension and number of processors to be used*/
2a. float **A, diff; /*A is global (shared) array representing the grid*/

/*diff is global (shared) maximum difference in current
sweep*/

2b. LOCKDEC(diff_lock); /*declaration of lock to enforce mutual exclusion*/
2c. BARDEC (bar1); /*barrier declaration for global synchronization between

sweeps*/

3. main()
4. begin
5. read(n); read(nprocs); /*read input matrix size and number of processes*/
6. A  G_MALLOC (a two-dimensional array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize A in an unspecified way*/
8a. CREATE (nprocs–1, Solve, A);
8. Solve(A); /*main process becomes a worker too*/
8b. WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/
9. end main

10. procedure Solve(A)
11. float **A; /*A is entire n+2-by-n+2 shared array,

as in the sequential program*/
12. begin
13. int i,j, pid, done = 0;
14. float temp, mydiff = 0; /*private variables*/
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/

15. while (!done) do /*outer loop over all diagonal elements*/
16. mydiff = diff = 0; /*set global diff to 0 (okay for all to do it)*/
16a. BARRIER(bar1, nprocs); /*ensure all reach here before anyone modifies diff*/
17. for i  mymin to mymax do /*for each of my rows*/
18. for j  1 to n do /*for all nonborder elements in that row*/
19. temp = A[i,j];
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. mydiff += abs(A[i,j] - temp);
23. endfor
24. endfor
25a. LOCK(diff_lock); /*update global diff if necessary*/
25b. diff += mydiff;
25c. UNLOCK(diff_lock);
25d. BARRIER(bar1, nprocs); /*ensure all reach here before checking if done*/
25e. if (diff/(n*n) < TOL) then done = 1; /*check convergence; all get

same answer*/
25f. BARRIER(bar1, nprocs);
26. endwhile
27. end procedure

Pseudo-code, Parallel Equation Solver for Shared Address Space (SAS)

of processors = p = nprocs
pid = process ID, 0 …. P-1

T = O(p)Serialized
update of global
difference

Barrier 1

Barrier 2

Barrier 3
Check/test convergence:
all processes do it

Main
process
or thread

Create
p-1
processes

(Start
sweep)

(sweep done)

mymin = low row
mymax = high row

T(p) = O(n2/p + p)

Sweep:
T = O(n2/p)

Array “A” is shared
(all grid points)

Which rows?

SAS

Mutual Exclusion (lock) for global difference

Critical Section: global difference

Loop Bounds/Which n/p Rows?More
Setup Private

Variables

Done?

Setup

Global
Difference

(Shared)
MyDiff = Local Difference (Private)

A = Matrix of n x n points allocated in shared memory

Critical
Section

14

Notes on SAS Program
• SPMD: not lockstep (i.e. still MIMD not SIMD) or even

necessarily same instructions.
• Row Assignment controlled by values of variables used as loop

bounds and process ID (pid) (i.e. mymin, mymax)
– Unique pid (0, 1, 2, … p-1) per process, used to control assignment of

blocks of rows to processes.
• Done condition (convergence test) evaluated redundantly by all

processes

• Code that does the update identical to sequential program

– Each process has private mydiff variable

• Most interesting special operations needed are for synchronization
– Accumulations of local differences (mydiff) into shared global

difference (diff) have to be mutually exclusive
– Why the need for all the barriers?

SPMD = Single Program Multiple Data

Otherwise each process must enter the shared
global difference critical section for each
point, n2/p times (n2 times total) instead of
just p times per iteration for all processes

Which n/p rows?

Why?

But

Using LOCK () …. UNLOCK ()

By checking if Global Difference = diff < Threshold

In a critical section

15

Need for Mutual Exclusion
• Code each process executes:

load the value of diff into register r1
add the register r2 to register r1
store the value of register r1 into diff

• A possible interleaving:

P1 P2

r1  diff {P1 gets 0 in its r1}
r1  diff {P2 also gets 0}

r1  r1+r2 {P1 sets its r1 to 1}
r1  r1+r2 {P2 sets its r1 to 1}

diff  r1 {P1 sets cell_cost to 1}
diff  r1 {P2 also sets cell_cost to 1}

• Need the sets of operations to be atomic (mutually exclusive)

Time

r2 = mydiff = Local Differencediff = Global Difference (in shared memory)

i.e relative operations ordering in time

diff = Global Difference

Local Difference in r2

Fix ?

Load

Store

r1 , r2
are registers

16

Mutual Exclusion

Provided by LOCK-UNLOCK around critical section
• Set of operations we want to execute atomically
• Implementation of LOCK/UNLOCK must guarantee mutual

exclusion.

Can lead to significant serialization if contended (many tasks
want to enter critical section at the same time)

• Especially costly since many accesses in critical section are non-
local

• Main reason to use private mydiff for partial accumulation locally:
– Reduce the number times needed to enter critical section by each

process to update global difference:
• Once per iteration vs. n2/p times per process without mydiff

i.e one task/process or processor at a time in critical section

However, no order guarantee

No order guarantee provided

O(p) total number of accesses to critical section

Or O(n2) total number of accesses to critical section by all processes
i.e. Enter critical section once for each point update (Without private mydiff)

Critical
Section

Lock

Unlock

Enter

Exit

17

Global (or group) Event Synchronization
BARRIER(nprocs): wait here till nprocs processes get here

• Built using lower level primitives
• Global sum example: wait for all to accumulate before using sum
• Often used to separate phases of computation

Process P_1 Process P_2 Process P_nprocs

set up eqn system set up eqn system set up eqn system
Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)
solve eqn system solve eqn system solve eqn system

Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)
apply results apply results apply results
Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)

• Conservative form of preserving dependencies, but easy to use

Convergence
Test

Done by all
processes

i.e locks, semaphores

Setup

Lock() ……. Unlock ()

Update Points

Lock() ……. Unlock () Lock() ……. Unlock () Enter Critical
Section

Most Critical Barrier?

18

Point-to-point (Ordering) Event Synchronization
(Not Used or Needed Here)

One process notifies another of an event so it can proceed:
• Needed for task ordering according to data dependence between tasks

• Common example: producer-consumer (bounded buffer)

• Concurrent programming on uniprocessor: semaphores

• Shared address space parallel programs: semaphores, or use ordinary variables
as flags

•Busy-waiting (i.e. spinning)
• Or block process (better for uniprocessors?)

P1 P2
A = 1;

a: while (flag is 0) do nothing;
b: flag
= 1;

print A;

Initially flag = 0

P2

P1

On A

Or compute
using “A” as
operand

i.e P2 computed A

i.e busy-wait (or spin on flag)

in shared address space

SAS

Time

19

Message Passing Grid Solver

• Cannot declare A to be a shared array any more

• Need to compose it logically from per-process private arrays
– Usually allocated in accordance with the assignment of work
– Process assigned a set of rows allocates them locally

• Explicit transfers (communication) of entire border or “Ghost”rows
between tasks is needed (as shown next slide)

• Structurally similar to SAS (e.g. SPMD), but orchestration is different
– Data structures and data access/naming
– Communication
– Synchronization Via Send/receive pairs

No shared address space

}Explicit

Implicit

myA arrays

e.g Local arrays vs. shared array

Thus

n/p rows in this case

At start of each iteration

Each n/p rows
in local memory

+

myA

20

• Parallel Computation = O(n2/p)
• Communication of rows = O(n)
• Communication of local DIFF = O(p)

• Computation = O(n2/p)
• Communication = O(n + p)
• Communication-to-Computation Ratio = O((n+p)/(n2/p)) = O((np + p2) / n2)

Message Passing Grid Solver

Pid = nprocs -1

pid = 0

Compute n2/p elements
per task n/p rows

per task

n

Send Row

Receive Row
Send Row

Receive Row

Send Row

Receive Row
Send Row

Receive Row

Send Row

Receive Row
Send Row

Receive Row

pid 1

Ghost (border) Rows
for Task pid 1

Time per iteration:
T = T(computation) + T(communication)
T = O(n2/p + n + p)

nprocs = number of processes = number of processors = p

n/p rows or n2/p points
per process or task

Same block
assignment
as before

As shown next slide

myA Each n/p rows

myA For pid 1

21

1. int pid, n, b; /*process id, matrix dimension and number of
processors to be used*/

2. float **myA;
3. main()
4. begin
5. read(n); read(nprocs); /*read input matrix size and number of processes*/
8a. CREATE (nprocs-1, Solve);
8b. Solve(); /*main process becomes a worker too*/
8c. WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/
9. end main

10. procedure Solve()
11. begin
13. int i,j, pid, n’ = n/nprocs, done = 0;
14. float temp, tempdiff, mydiff = 0; /*private variables*/
6. myA  malloc(a 2-d array of size [n/nprocs + 2] by n+2);

/*my assigned rows of A*/
7. initialize(myA); /*initialize my rows of A, in an unspecified way*/

15. while (!done) do
16. mydiff = 0; /*set local diff to 0*/
16a. if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW);
16b. if (pid = nprocs-1) then

SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW);
16c. if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-1,ROW);
16d. if (pid != nprocs-1) then

RECEIVE(&myA[n’+1,0],n*sizeof(float), pid+1,ROW);
/*border rows of neighbors have now been copied
into myA[0,*] and myA[n’+1,*]*/

17. for i  1 to n’ do /*for each of my (nonghost) rows*/
18. for j  1 to n do /*for all nonborder elements in that row*/
19. temp = myA[i,j];
20. myA[i,j] = 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,j]);
22. mydiff += abs(myA[i,j] - temp);
23. endfor
24. endfor

/*communicate local diff values and determine if
done; can be replaced by reduction and broadcast*/

25a. if (pid != 0) then /*process 0 holds global total diff*/
25b. SEND(mydiff,sizeof(float),0,DIFF);
25c. RECEIVE(done,sizeof(int),0,DONE);
25d. else /*pid 0 does this*/
25e. for i  1 to nprocs-1 do /*for each other process*/
25f. RECEIVE(tempdiff,sizeof(float),*,DIFF);
25g. mydiff += tempdiff; /*accumulate into total*/
25h. endfor
25i if (mydiff/(n*n) < TOL) then done = 1;
25j. for i  1 to nprocs-1 do /*for each other process*/
25k. SEND(done,sizeof(int),i,DONE);
25l. endfor
25m. endif
26. endwhile
27. end procedure

Pseudo-code, Parallel
Equation Solver
for Message Passing

Communication
O(n)
exchange ghost rows

O(p)

Computation
O(n2/p)

of processors = p = nprocs

Create p-1 processes

Initialize local rows myA

Exchange ghost rows

Sweep over n/p rows
= n2/p points per task
T = O(n2/p)

T = O(n2/p + n + p)

Pid 0:
calculate global difference
and test for convergence
send test result to
all processes

Send mydiff to pid 0

{
Receive test result from pid 0

(send/receive)

Message
Passing

Pid 0

Initialize myA (Local rows)

Before start of iteration

Done?

Send one or two ghost rows

Receive one or two ghost rows

Local Difference

Only Pid 0 tests for convergence

Communication

Done by master process
(pid =0)

+

+
Update Points of myA

22

Notes on Message Passing Program
• Use of ghost rows.
• Receive does not transfer data, send does (sender-initiated)

– Unlike SAS which is usually receiver-initiated (load fetches data)
• Communication done at beginning of iteration (exchange of ghost rows).

• Explicit communication in whole rows, not one element at a time (SAS)
• Core similar, but indices/bounds in local space rather than global space.
• Synchronization through sends and blocking receives (implicit)

– Update of global difference and event synch for done condition
– Could implement locks and barriers with messages

• Only one process (pid = 0) checks convergence (done condition).
• Can use REDUCE and BROADCAST library calls to simplify code:

/*communicate local diff values and determine if done, using reduction and broadcast*/
25b. REDUCE(0,mydiff,sizeof(float),ADD);
25c. if (pid == 0) then
25i. if (mydiff/(n*n) < TOL) then done = 1;
25k. endif
25m. BROADCAST(0,done,sizeof(int),DONE);

Tell all tasks if done

Compute global difference

Broadcast convergence test result to all processes

i.e One-sided
communication

i.e Two-sided communicationOr border rows

23

Message-Passing Modes: Send and Receive Alternatives

• Affect event synch (mutual exclusion implied: only one process touches
data)

• Affect ease of programming and performance
Synchronous messages provide built-in synch. through match

• Separate event synchronization needed with asynch. messages
With synchronous messages, our code is deadlocked. Fix?

Can extend functionality: stride, scatter-gather, groups

Semantic flavors: based on when control is returned
Affect when data structures or buffers can be reused at either end

Send/Receive

Synchronous Asynchronous

Blocking Non-blocking

Send waits until
message is actually
received

Receive: Wait until message is received
Send: Wait until message is sent Return immediately (both)

Easy to create
Deadlock

Use asynchronous blocking sends/receives

All can be implemented using send/receive primitives

Point-to-Point Communication

Immediate

24

Synchronous Message Passing:
Process X executing a synchronous send to process Y has to wait
until process Y has executed a synchronous receive from X.

Asynchronous Message Passing:
Blocking Send/Receive:

A blocking send is executed when a process reaches it without waiting
for a corresponding receive. Returns when the message is sent. A
blocking receive is executed when a process reaches it and only returns
after the message has been received.

Non-Blocking Send/Receive:
A non-blocking send is executed when reached by the process without
waiting for a corresponding receive. A non-blocking receive is
executed when a process reaches it without waiting for a corresponding
send. Both return immediately.

Message-Passing Modes: Send and Receive Alternatives

Most
Common
Type

In MPI: MPI_Ssend () MPI_Srecv()

In MPI: MPI_Send () MPI_Recv()

In MPI: MPI_Isend () MPI_Irecv()

MPI = Message Passing Interface

25

Orchestration: Summary
Shared address space

• Shared and private data explicitly separate
• Communication implicit in access patterns
• No correctness need for data distribution
• Synchronization via atomic operations on shared data
• Synchronization explicit and distinct from data communication

Message passing
• Data distribution among local address spaces needed
• No explicit shared structures (implicit in communication patterns)
• Communication is explicit
• Synchronization implicit in communication (at least in synch. case)

– Mutual exclusion implied

myA’s

No SAS

Here Critical Section + Barriers

26

Correctness in Grid Solver Program
Decomposition and Assignment similar in SAS and message-passing
Orchestration is different:

• Data structures, data access/naming, communication, synchronization

SAS Msg-Passing

Explicit global data structure? Yes No

Assignment indept of data layout? Yes No

Communication Implicit Explicit

Synchronization Explicit Implicit

Explicit replication of border rows? No Yes

Requirements for performance are another story ...

Ghost
Rows

Via
Send/
Receive
Pairs

Lock/unlock
Barriers

i.e. ghost rows

AKA shared?

Task

i.e. n/p block of rows

