Saturation numbers in tripartite graphs

Eric Sullivan∗and Paul S. Wenger†

August 19, 2014

Abstract

Given graphs H and F, a subgraph $G \subseteq H$ is an F-saturated subgraph of H if $F \not\subseteq G$, but $F \subseteq G + e$ for all $e \in E(H) \setminus E(G)$. The saturation number of F in H, denoted $\text{sat}(H, F)$, is the minimum number of edges in an F-saturated subgraph of H. In this paper we study saturation numbers of tripartite graphs in tripartite graphs. For $\ell \geq 1$ and n_1, n_2, and n_3 sufficiently large, we determine $\text{sat}(K_{n_1,n_2,n_3}, K_{\ell,\ell,\ell})$ and $\text{sat}(K_{n_1,n_2,n_3}, K_{\ell,\ell,\ell-1})$ exactly and $\text{sat}(K_{n_1,n_2,n_3}, K_{\ell,\ell,\ell-2})$ within an additive constant. We also include general constructions of $K_{\ell,m,p}$-saturated subgraphs of K_{n_1,n_2,n_3} with few edges for $\ell \geq m \geq p > 0$.

Keywords: 05C35; saturation; tripartite; subgraph

1 Introduction

In this paper, all graphs are simple and we let $V(G)$ and $E(G)$ denote the vertex set and edge set of the graph G, respectively. Let \overline{G} denote the complement of G. For a set of vertices $S \subseteq V(G)$, we let $G[S]$ denote the induced subgraph of G on S.

Given a graph F, a graph G is F-saturated if F is not a subgraph of G but F is a subgraph of $G + e$ for any edge $e \in E(\overline{G})$. The saturation number of F is the minimum size of an n-vertex F-saturated graph, and is denoted $\text{sat}(n, F)$. Saturation numbers were first studied by Erdős, Hajnal, and Moon [3], who proved that $\text{sat}(n, K_k) = (k-2)n - {k-1 \choose 2}$ and characterized the n-vertex K_k-saturated graphs with this number of edges. For a thorough account of the results known about saturation numbers, the reader should consult the excellent survey of Faudree, Faudree, and Schmitt [4].

Because saturation numbers consider the addition of any edge from \overline{G} to G, it is natural in this setting to think of G as a subgraph of the complete graph K_n. In this paper we consider saturation numbers when G is treated as a subgraph of a complete tripartite graph.

∗Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO; eric.2.sullivan@ucdenver.edu
†School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY; pswsma@rit.edu.
Let F and H be graphs be fixed graphs; we call H the host graph. A subgraph G of H is an F-saturated subgraph of H if F is not a subgraph of G, but F is a subgraph of $G + e$ for all $e \in E(H) \setminus E(G)$. The saturation number of F in H is the minimum number of edges in an F-saturated subgraph of of H, and is denoted $\text{sat}(H, F)$. With this notation, $\text{sat}(n, F) = \text{sat}(K_n, F)$.

The first result on saturation numbers in host graphs that are not complete is from a related problem in bipartite graphs. Let $\text{sat}(K_{(n_1, n_2)}, K_{(\ell, m)})$ denote the minimum number of edges in a bipartite G graph on the vertex set $V_1 \cup V_2$ where $|V_i| = n_i$ such that: 1) G does not contain $K_{\ell,m}$ with ℓ vertices in V_1 and m vertices in V_2, and 2) the addition of any edge joining V_1 and V_2 yields a copy of $K_{\ell,m}$ with ℓ vertices in V_1 and m vertices in V_2. This parameter is the minimization analogue of the Zarankiewicz number. Bollobás and Wessel [1, 2, 8, 9] independently proved that $\text{sat}(K_{(n_1, n_2)}, K_{(\ell, m)}) = (m - 1)n_1 + (\ell - 1)n_2 - (m - 1)(\ell - 1)$ for $2 \leq \ell \leq n_1$ and $2 \leq m \leq n_2$, confirming a conjecture of Erdős, Hajnal, and Moon from [3].

In [5], Moshkovitz and Shapira studied saturation numbers in d-uniform d-partite hypergraphs. When $d = 2$, this reduces to saturation numbers of bipartite graphs in bipartite graphs. They provided a construction showing that $\text{sat}(K_{n,n}, K_{\ell,m}) \leq (\ell + m - 2)n - \left[\left(\frac{\ell + m - 2}{2} \right)^2 \right]$ and conjectured that the bound is sharp for n sufficiently large. This upper bound shows that for n sufficiently large, $\text{sat}(K_{n,n}, K_{\ell,m}) < \text{sat}(K_{(n,n)}, K_{(\ell,m)})$. Recently, Gan, Korándi and Sudakov [6] showed that $\text{sat}(K_{n,n}, K_{\ell,m}) \geq (\ell + m - 2)n - (\ell + m - 2)^2$ and proved that the Moshkovitz-Shapira bound is sharp for $K_{2,3}$, the first nontrivial case.

Let K^n_k denote the complete k-partite graph in which each partite set has order n. In [5], Ferrara, Jacobson, Pfender, and the second author studied the saturation number of K_3 in balanced multipartite graphs. They proved that if $k \geq 3$ and $n \geq 100$, then

$$\text{sat}(K^n_k, K_3) = \min\{2kn + n^2 - 4k - 1, 3kn - 3n - 6\}.$$

Furthermore, they characterized the K_3-saturated subgraphs of K^n_k of minimum size.

The focus of this paper is the saturation numbers in complete tripartite graphs. In Section 2, we provide constructions of $K_{\ell,m,p}$-saturated subgraphs of K_{n_1, n_2, n_3} with small size. In Section 3, we determine $\text{sat}(K_{n_1, n_2, n_3}, K_{\ell, \ell, \ell})$ and $\text{sat}(K_{n_1, n_2, n_3}, K_{\ell, \ell, \ell-1})$ and characterize the $K_{\ell,\ell,\ell}$-saturated subgraphs and $K_{\ell,\ell,\ell-1}$-saturated subgraphs of K_{n_1, n_2, n_3} of minimum size. In Section 4, we prove that for $\text{sat}(K_{n,n,n}, K_{\ell,\ell,\ell-2})$, the upper bound obtained from the construction in Section 2 is correct within an additive constant depending on ℓ. Finally, Section 5 contains various conjectures and open questions for future work.

Throughout the paper, we will assume that $n_1 \geq n_2 \geq n_3$, and that the partite sets of
K_{n_1,n_2,n_3} are V_1, V_2, and V_3 with $|V_i| = n_i$. We label the vertices in V_i as $V_i = \{v_i^1, \ldots, v_i^{n_i}\}$. When G is a tripartite graph on the vertex set $V_1 \cup V_2 \cup V_3$, we let $\delta_i(G)$ denote the minimum degree of the vertices in V_i. When the graph in question is clear, we simply write δ_i. For a vertex $v \in G$, we let $N_i(v)$ denote the set of neighbors of v in set V_i; that is, $N_i(v) = N(v) \cap V_i$. Similarly, if S is a set of vertices in G, then $N_i(S) = \bigcup_{v \in S} N_i(v)$. Throughout the paper, all arithmetic in subscripts is performed modulo 3. We also use $[k]$ to denote the set $\{1, \ldots, k\}$.

2 Constructions of saturated subgraphs of K_{n_1,n_2,n_3}

This section contains constructions of $K_{\ell,m,p}$-saturated subgraphs of K_{n_1,n_2,n_3} with few edges. We begin with two constructions of $K_{\ell,m,p}$-saturated subgraphs of K_{n_1,n_2,n_3} when $m = p$. The reader is invited to keep in mind the particular case of $K_{\ell,\ell,\ell}$, in which the constructions are greatly simplified and which we prove are best possible in Section 3.

Construction 1. Let ℓ and m be positive integers such that $\ell \geq m$. Let $n_1 \geq n_2 \geq n_3 \geq \max\{\ell + 2, 3\ell - 2m - 2\}$. For each $i \in [3]$, let S_i be the m-vertex set $\{v_i^{n_i-m+1}, \ldots, v_i^{n_i}\}$ and join S_i to V_{i+1} and V_{i+2}. When $\ell > m$, add the following edges, where arithmetic in the superscripts of vertices in V_i is performed modulo $n_i - m$:

1. for $a \in [n_3 - m]$, join v_3^a to $\{v_1^a, \ldots, v_1^{a+\ell-m-1}\} \cup \{v_2^a, \ldots, v_2^{a+\ell-m-1}\}$;
2. for $a \in [n_2 - m]$, join v_2^a to $\{v_1^{a+\ell-m}, \ldots, v_1^{a+2\ell-2m-1}\}$.

Finally, in all cases, remove the edges $v_1^{n_1}v_2^{n_2}$, $v_1^{n_1}v_3^{n_3}$, and $v_2^{n_2}v_3^{n_3}$ (see Figure 1). We call this graph G_1.

For a set of integers S, let $S \mod n$ denote the set of residues of the elements of S modulo n. Thus we have

$$E(G_1) = \{v_i^j v_j^r : i \in [3], j \in [3], i \ne j, n_i - m + 1 \leq r \leq n_i \text{ or } n_j - m + 1 \leq s \leq n_j\}$$

$$\cup \{v_3^a v_j^r : j \in \{1,2\}, a \in [n_3 - m], b \in \{a, \ldots, a + \ell - m - 1\} \mod (n_j - m)\}$$

$$\cup \{v_2^a v_j^r : a \in [n_2 - m], b \in \{a + \ell - m, \ldots, a + 2\ell - 2m - 1\} \mod (n_1 - m)\}$$

$$\setminus \{v_1^{n_1}v_2^{n_2}, v_1^{n_1}v_3^{n_3}, v_1^{n_1}v_3^{n_3}, v_2^{n_2}v_3^{n_3}\}.$$
Figure 1: Construction 1: A $K_{\ell,m,m}$-saturated subgraph of K_{n_1,n_2,n_3}. Solid lines denote complete joins between sets, and dotted lines denote edges that have been removed. The lines marked with “max degree $\ell - m$” represent the edges described in items 1 and 2 of Construction 1.

Construction 2. For $i \in [3]$, let G_i^j be the graph obtained from the graph from Construction 1 by removing the set $\{v_i^{n_1}, v_i^{n_1+1}, v_i^{n_i-1}, v_i^{n_i+1}, v_i^{n_i+2}, v_i^{n_i+2}\}$ instead of $\{v_1^{n_1}, v_2^{n_2}, v_1^{n_1}, v_2^{n_2}, v_3^{n_3}\}$ (see Figure 2).

Theorem 1. Let ℓ and m be positive integers such that $\ell \geq m$. For $n_1 \geq n_2 \geq n_3 \geq \max\{\ell + 2, 3\ell - 2m - 1\}$, the graphs from Construction 1 and Construction 2 are $K_{\ell,m,m}$-saturated subgraphs of K_{n_1,n_2,n_3}. Thus,

$$\text{sat}(K_{n_1,n_2,n_3}, K_{\ell,m,m}) \leq 2m(n_1 + n_2 + n_3) + (\ell - m)(n_2 + 2n_3) - 3\ell m - 3.$$

Proof. Let G be a graph from Construction 1 or 2. By construction, $G - (S_1 \cup S_2 \cup S_3)$ is triangle-free. Therefore, if $v \in V_i \setminus S_i$, then $G[N(v)]$ does not contain $K_{\ell,m}$ as a subgraph. Since $G[S_i \cup S_{i+1}]$ is not a complete bipartite graph, it then follows that G is $K_{\ell,m,m}$-free.

Let $e = uv$ be a nonedge in G. We show that $G + e$ contains $K_{\ell,m,m}$; there are two cases to consider.

Case 1: e joins two vertices in $S_1 \cup S_2 \cup S_3$. If e joins S_i and S_{i+1}, then $G + e$ contains $K_{\ell,m,m}$ on the vertices $\{v_i^1, \ldots, v_i^{\ell}\} \cup S_i \cup S_{i+1}$.

Case 2: e joins two vertices in $V(G) \setminus (S_1 \cup S_2 \cup S_3)$. Let $i, j \in [3]$ such that $i < j$, and assume that $e = v_j^a v_i^b$ where $a \in [n_j - m]$ and $b \in [n_i - m]$. Let k be the third value in $[3]$.

4
Figure 2: Construction 2: A $K_{\ell,m,m}$-saturated subgraph of K_{n_1,n_2,n_3}. Solid lines denote complete joins between sets, and dotted lines denote edges that have been removed. The lines marked with “max degree $\ell - m$” represent the edges described in items 1 and 2 of Construction 1.

Let $x_i \in S_i$ and $x_j \in S_j$ be the vertices that have a nonneighbor in S_k. By construction, $S_i - x_i$ is completely joined to $S_j - x_j$. In this case, $G + e$ contains $K_{\ell,m,m}$ on the vertex set $(N_i(v^a_i) + v^b_i - x_i) \cup (S_j + v^a_j - x_j) \cup S_k$.

We now construct $K_{\ell,m,p}$-saturated subgraphs of K_{n_1,n_2,n_3} when $m > p$. Like Constructions 1 and 2, the subgraph of this construction induced by $(V_1 \setminus S_1) \cup (V_2 \setminus S_2) \cup (V_3 \setminus S_3)$ consists of bipartite graphs with maximum degree $\ell - m$. Unlike Constructions 1 and 2, the vertices in this set have fewer than ℓ neighbors in the other partite sets. Therefore it is not necessary to specify completely the neighborhoods of these vertices.

Construction 3. Let ℓ, m, and p be positive integers such that $\ell \geq m > p$. Let $n_1 \geq n_2 \geq n_3 \geq \ell$. For each $i \in [3]$ let S_i be an $(m - 1)$-vertex subset of V_i and join S_i to V_{i+1} and V_{i+2}. For $i < j$, join $V_i \setminus S_i$ to $V_j \setminus S_j$ with an $(\ell - m)(n_j - m + 1)$-edge graph with maximum degree $\ell - m$. Thus each vertex in $V_j \setminus S_j$ has exactly $\ell - m$ neighbors in $V_i \setminus S_i$, and each vertex in $V_i \setminus S_i$ has at most $\ell - m$ neighbors in $V_j \setminus S_j$.

Theorem 2. Let ℓ, m, and p be positive integers such that $\ell \geq m > p$. For $n_1 \geq n_2 \geq n_3 \geq \ell$, the graph from Construction 3 is a $K_{\ell,m,p}$-saturated subgraph of K_{n_1,n_2,n_3}. Thus,

$$\text{sat}(K_{n_1,n_2,n_3}, K_{\ell,m,p}) \leq 2(m - 1)(n_1 + n_2 + n_3) + (\ell - m)(n_2 + 2n_3) - 3\ell(m - 1) + 3m - 3.$$
Figure 3: Construction 3: A $K_{\ell,m,p}$-saturated subgraph of K_{n_1,n_2,n_3} for $m > p$. Solid lines denote complete joins between sets. The lines marked with “max degree $\ell - m$” represent the $(\ell - m)(n_j - m + 1)$-edge graphs with maximum degree $\ell - m$ used in Construction 3.

\[\text{Proof.} \] Let G be the graph described in Construction 3. Let $i \in [3]$. If $v \in V_i \setminus S_i$, then v has at most $\ell - 1$ neighbors in V_{i+1} and at most $\ell - 1$ neighbors in V_{i+2}. Since there are only $m - 1$ vertices in S_i, it follows that G does not contain $K_{\ell,m}$, and therefore G is $K_{\ell,m,p}$-free.

Let $i, j \in [3]$ such that $i < j$, and let k be the third value in $[3]$. Let e be a nonedge in G joining $v_i \in V_i$ and $v_j \in V_j$. Thus $G + e$ contains $K_{\ell,m,m-1}$ on the vertex set $(N_i(v_j) + v_i) \cup (S_j + v_j) \cup S_k$. Since $m > p$, it follows that $G + e$ contains $K_{\ell,m,p}$. \qed

We include two final constructions in the special case of $K_{\ell,m,p}$-saturated subgraphs of $K_{n,n,n}$. These constructions are inspired by the $K_{\ell,m}$-saturated subgraphs of $K_{n,n}$ used in [7] and [6]. When the host graph is balanced, Constructions 1, 2, and 3 contain large $(\ell - m)$-regular graphs; we will replace those graphs with graphs with slightly fewer edges.

Construction 4. Let ℓ and m be positive integers such that $\ell \geq m$ and let

$$n \geq \max \left\{ \ell + 2, 3\ell + \left\lfloor \frac{\ell - m}{2} \right\rfloor - 2m - 2 \right\}.$$

For each $i \in [3]$, let $S_i = \{v_i^1, \ldots, v_i^m\}$ and join S_i to V_{i+1} and V_{i+2}. Let $t = \left\lfloor \frac{\ell - m}{2} \right\rfloor$, and for each $i \in [3]$ let $T_i = \{v_i^{m+1}, \ldots, v_i^{m+t}\}$. For all $i \in [3]$, completely join T_i to T_{i+1}. Let $\bigcup_{i \in [3]}(V_i \setminus (S_i \cup T_i))$ span a triangle-free tripartite graph so that for all $i \in [3]$, each vertex in $V_i \setminus (S_i \cup T_i)$ has exactly $\ell - m$ neighbors in both $V_{i+1} \setminus (S_{i+1} \cup T_{i+1})$ and $V_{i+2} \setminus (S_{i+2} \cup T_{i+2})$.

6
(such a graph is easily obtained using items 1 and 2 from Construction 1). Finally, remove the edges \{v_1^1v_2^1, v_1^1v_3^1, v_2^1v_3^1\} (see Figure 4).

Figure 4: Construction 4: A $K_{\ell,m,m}$-saturated subgraph of $K_{n,n,n}$. Solid lines denote complete joins between sets, and dotted lines denote edges that have been removed. The lines marked with "$(\ell - m)$-regular" represent the triangle-free tripartite graph used in Construction 4.

It is possible to modify Construction 4 so that the edges removed induce P_4 rather than K_3 as in Construction 2 (for instance, remove \{v_1^iv_{i+1}^1, v_2^iv_{i+1}^2, v_{i+1}^iv_{i+2}^1\}). Since we do not prove that these constructions are best possible nor that they characterize the $K_{\ell,m,m}$-saturated subgraphs of $K_{n,n,n}$ of minimum size, we do not include this variant as a separate construction.

We now present a $K_{\ell,m,p}$-saturated subgraph of $K_{n,n,n}$ for $m > p$.

Construction 5. Let ℓ, m, and p be positive integers such that $\ell \geq m > p$ and let $n \geq \ell + \left\lfloor \frac{\ell-m}{2} \right\rfloor - 1$. For each $j \in [3]$, let S_j be an $(m-1)$-vertex subset of V_j and join S_i to V_{i+1} and V_{i+2}. Let $t = \left\lfloor \frac{\ell-m}{2} \right\rfloor$, and for each $j \in [3]$ let T_i be a t-vertex subset of $V_j \setminus S_j$. For all $i \in [3]$, completely join T_i to T_{i+1}. For each $i \in [3]$, let $(V_i \cup V_{i+1}) \setminus (S_i \cup S_{i+1} \cup T_i \cup T_{i+1})$ induce an $(\ell - m)$-regular bipartite graph.

Constructions 4 and 5 yield the following two theorems. The proofs of these theorems follow almost immediately from the proofs of Theorems 1 and 2, respectively, and therefore we omit them.
Theorem 3. Let \(\ell \) and \(m \) be positive integers such that \(\ell \geq m \) and let
\[
n \geq \max \left\{ \ell + 2, 3\ell + \left\lfloor \frac{\ell - m}{2} \right\rfloor - 2m - 2 \right\}.
\]
The graph from Construction 4 is a \(K_{\ell,m,m} \)-saturated subgraph of \(K_{n,n,n} \), and thus
\[
sat(K_{n,n,n}, K_{\ell,m,p}) \leq 3(\ell + m)n - 3\left(\ell - m - \left\lfloor \frac{\ell - m}{2} \right\rfloor \right) \left\lfloor \frac{\ell - m}{2} \right\rfloor - 3\ell m - 3.
\]

Theorem 4. Let \(\ell, m, \) and \(p \) be positive integers such that \(\ell \geq m > p \) and let \(n \geq \ell + \left\lfloor \frac{\ell - m}{2} \right\rfloor - 1 \). The graph from Construction 5 is a \(K_{\ell,m,p} \)-saturated subgraph of \(K_{n,n,n} \), and thus
\[
sat(K_{n,n,n}, K_{\ell,m,p}) \leq 3(\ell + m - 2)n - 3(m - 1)(\ell - 1) + 3 \left\lfloor \frac{\ell - m}{2} \right\rfloor^2 - 3(\ell - m) \left\lfloor \frac{\ell - m}{2} \right\rfloor.
\]

Figure 5: Construction 5: A \(K_{\ell,m,p} \)-saturated subgraph of \(K_{n,n,n} \). Solid lines denote complete joins between sets. The lines marked with “\((\ell - m)\)-regular” represent the \((\ell - m)\)-regular bipartite graphs used in Construction 5.

3 The saturation numbers of \(K_{\ell,\ell,\ell} \) and \(K_{\ell,\ell,\ell-1} \)

In this section we prove the following two theorems on saturation numbers in tripartite graphs.
Theorem 5. Let ℓ be a positive integer. If n_1, n_2, and n_3 are positive integers such that $n_1 \geq n_2 \geq n_3 \geq 32\ell^2 + 40\ell^2 + 11\ell$, then

$$\text{sat}(K_{n_1,n_2,n_3}, K_{\ell,\ell,\ell}) = 2\ell(n_1 + n_2 + n_3) - 3\ell^2 - 3.$$

Furthermore, the graphs from Constructions 1 and 2 are the only $K_{\ell,\ell,\ell}$-saturated subgraphs of K_{n_1,n_2,n_3} with this number of edges.

Theorem 6. Let ℓ be a positive integer. If n_1, n_2, and n_3 are positive integers such that $n_1 \geq n_2 \geq n_3 \geq 32(\ell - 1)^3 + 40(\ell - 1)^2 + 11(\ell - 1)$, then

$$\text{sat}(K_{n_1,n_2,n_3}, K_{\ell,\ell,\ell-1}) = 2(\ell - 1)(n_1 + n_2 + n_3) - 3(\ell - 1)^2.$$

Furthermore, the graph from Construction 3 is the unique $K_{\ell,\ell,\ell-1}$-saturated subgraph of K_{n_1,n_2,n_3} with this number of edges.

Though $K_{\ell,\ell,\ell}$ and $K_{\ell,\ell,\ell-1}$ correspond to different constructions from Section 2, they are both of the form $K_{\ell,\ell,m}$ for $\ell \geq m$. Thus we begin by establishing some common lemmas on the number of edges in $K_{\ell,\ell,m}$-saturated subgraphs of K_{n_1,n_2,n_3} when $m \geq 1$.

Lemma 7. Let $i \in [3]$ and assume that $n_i \geq (3m + 1)(\delta_{i+1} + \delta_{i+2}) + 2m^2 + m$. If G is a $K_{\ell,\ell,m}$-saturated subgraph of K_{n_1,n_2,n_3} such that $\delta_i > 2m$, then $|E(G)| \geq 2m(n_1 + n_2 + n_3)$.

Proof. For each $j \in [3]$, let v_j be a vertex of degree δ_j in V_j. Each nonneighbor of v_i in $V_{i+1} \cup V_{i+2}$ must have at least m common neighbors with v_i. Therefore there are at least $m(n_{i+1} + n_{i+2} - \delta_i)$ edges joining V_{i+1} and V_{i+2}. Similarly, there are at least $m(n_{i+1} - \delta_{i+2})$ edges joining V_{i+1} and $N_i(v_{i+2})$ and at least $m(n_{i+2} - \delta_{i+1})$ edges joining V_{i+2} and $N_i(v_{i+1})$. Finally, there are at least $\delta_i(n_i - \delta_{i+1} - \delta_{i+2})$ edges incident to $V_i \setminus (N_i(v_{i+1}) \cup N_i(v_{i+2}))$. Summing, we have

$$|E(G)| \geq m(2n_{i+1} + 2n_{i+2} - \delta_{i+1} - \delta_{i+2}) + \delta_i(n_i - \delta_{i+1} - \delta_{i+2} - m).$$

Since $n_i > \delta_{i+1} + \delta_{i+2} + m$, this lower bound is increasing in δ_i. Therefore, if $\delta_i > 2m$, then

$$|E(G)| \geq m(2n_{i+1} + 2n_{i+2} - \delta_{i+1} - \delta_{i+2}) + (2m + 1)(n_i - \delta_{i+1} - \delta_{i+2} - m)$$

$$\geq 2m(n_1 + n_2 + n_3) + n_i - [(3m + 1)(\delta_{i+1} + \delta_{i+2}) + 2m^2 + m]$$

$$\geq 2m(n_1 + n_2 + n_3).$$

Lemma 8. Let $n_1 \geq n_2 \geq n_3 \geq 32m^3 + 40m^2 + 11m$. If G is a $K_{\ell,\ell,m}$-saturated subgraph of K_{n_1,n_2,n_3} such that $\delta_i > 2m$ for some $i \in [3]$, then $|E(G)| \geq 2m(n_1 + n_2 + n_3)$.
Proof. First observe that each vertex in V_i has at least m neighbors in both V_{i+1} and V_{i+2} or is completely joined to V_{i+1} or V_{i+2}. Thus $\delta(G) \geq 2m$. There are two cases to consider depending on the order of n_i.

Case 1: $n_1 \leq 4mn_2$. If $\delta_1 \geq 6m$, then $|E(G)| \geq 6mn_1 \geq 2m(n_1 + n_2 + n_3)$. Therefore we may assume that $\delta_1 < 6m$. If $\delta_2 \geq 8m^2 + 4m$, then $|E(G)| \geq (8m^2 + 4m)n_2 \geq 2m(n_1 + n_2 + n_3)$. Therefore we may assume that $\delta_2 < 8m^2 + 4m$. Since $n_3 \geq (3m + 1)(8m^2 + 10m) + 2m^2 + m$, Lemma 7 implies that if $\delta_3 > 2m$, then $|E(G)| \geq 2m(n_1 + n_2 + n_3)$. Therefore we may assume that $\delta_3 = 2m$. Lemma 7 now implies that if $\delta_1 > 2m$ or $\delta_2 > 2m$, then $|E(G)| \geq 2m(n_1 + n_2 + n_3)$.

Case 2: $n_1 > 4mn_2$. If $\delta_1 > 2m$, then $|E(G)| \geq (2m + 1)n_1 \geq 2m(n_1 + n_2 + n_3)$. Therefore we may assume that $\delta_1 = 2m$. Let R be the set of vertices in V_1 with degree $2m$. If $|V_1 \setminus R| \geq 2m(n_2 + n_3)$, then $|E(G)| \geq 2m(n_1 + n_2 + n_3)$. Therefore we assume that $|V_1 \setminus R| < 2m(n_2 + n_3)$.

If $v \in R$, then each vertex in $N_2(v)$ is adjacent to every vertex in $V_3 \setminus N_3(v)$. Thus each vertex in $N_2(R)$ has at least $n_3 - m$ neighbors in V_3. If $|N_2(R)| \geq 4mn_2/(n_3 - m)$, then there are at least $4mn_2$ edges joining V_2 and V_3, and consequently $|E(G)| \geq 2m(n_1 + n_2 + n_3)$. Therefore we may assume that $|N_2(R)| < 4mn_2/(n_3 - m)$.

There are at least $\delta_2(n_2 - 4mn_2/(n_3 - m))$ edges incident to $V_2 \setminus N_2(R)$. There are at least $2m(n_1 - 2m(n_2 + n_3))$ edges incident to R. Therefore, if $\delta_2 \geq 8m^2 + 4m + 1$, then

\[
|E(G)| \geq 2m(n_1 - 2m(n_2 + n_3)) + (8m^2 + 4m + 1) \left(n_2 - \frac{4mn_2}{n_3 - m} \right)
\geq 2mn_1 + 4mn_2 + n_2 - n_2 \left(\frac{8m^2 + 4m + 1}{n_3 - m} \right)
\geq 2m(n_1 + n_2 + n_3).
\]

Therefore we may assume that $\delta_2 \leq 8m^2 + 4m$.

Since $\delta_1 = 2m$, $\delta_2 \leq 8m^2 + 4m$, and $n_3 \geq (3m + 1)(8m^2 + 6m) + 2m^2 + m$, Lemma 7 implies that if $\delta_3 > 2m$, then $|E(G)| \geq 2m(n_1 + n_2 + n_3)$. Therefore we may assume that $\delta_3 = 2m$. It now follows from Lemma 7 that if $\delta_2 > 2m$, then $|E(G)| \geq 2m(n_1 + n_2 + n_3)$.

We now prove Theorems 5 and 6.

Proof of Theorem 5. Let G be a $K_{\ell, \ell, \ell}$-saturated subgraph of K_{n_1, n_2, n_3} of minimum size. It follows from Lemma 8 that if $\delta_i > 2\ell$ for any $i \in [3]$, then $|E(G)| \geq 2\ell(n_1 + n_2 + n_3)$. Since it is clear that $\delta(G) \geq 2\ell$, we assume that $\delta_1 = \delta_2 = \delta_3 = 2\ell$.

10
For $i \in [3]$, let $v_i \in V_i$ be a vertex of degree 2ℓ. Thus v_i has ℓ neighbors in V_{i+1} and ℓ neighbors in V_{i+2}, and G contains all edges joining $N_{i+1}(v_i)$ to $V_{i+2} \setminus N_{i+2}(v_i)$ and all edges joining $N_{i+2}(v_i)$ to $V_{i+1} \setminus N_{i+1}(v_i)$. Therefore, the vertices of degree 2ℓ in G form an independent set. Let $S = N(v_1) \cup N(v_2) \cup N(v_3)$ and let $S_i = S \cap V_i$. Since v_{i+1} and v_{i+2} have ℓ common neighbors, we conclude that $N_i(v_{i+1}) = N_i(v_{i+2})$ and therefore $|S_i| = \ell$. Since the addition of an edge joining v_i and any vertex in $(V_{i+1} \cup V_{i+2}) \setminus N(v_i)$ completes a copy of $K_{\ell,\ell,\ell}$, there are at least $\ell^2 - 1$ edges joining S_{i+1} and S_{i+2}. Therefore there are at least $\ell(n_{i+1} + n_{i+2}) - \ell^2 - 1$ edges joining V_{i+1} and V_{i+2}. Thus $|E(G)| \geq 2\ell(n_1 + n_2 + n_3) - 3\ell^2 - 3$, and in conjunction with Theorem 1 we conclude that $\text{sat}(K_{n_1,n_2,n_3}, K_{\ell,\ell,\ell}) = 2\ell(n_1 + n_2 + n_3) - 3\ell^2 - 3$.

Since $|E(G)| = 2\ell(n_1 + n_2 + n_3) - 3\ell^2 - 3$, it follows that there are exactly $\ell^2 - 1$ edges joining S_i and S_{i+1} for all $i \in [3]$. Suppose that G is not isomorphic to a graph from Construction 1 or 2. Thus the three nonedges in $G[S]$ do not induce K_3 or P_4. Without loss of generality, assume that $u_1^1u_1^1$ is a nonedge in $G[S]$ and the other two nonedges in $G[S]$ are incident to u_1^2 and u_1^3, respectively. Since G is $K_{\ell,\ell,\ell}$-saturated, there is a subgraph H of $G + v_i v_{i+1}$ that is isomorphic to $K_{\ell,\ell,\ell}$. It follows that H must contain v_i, v_{i+1} and S_{i+2}, and therefore H cannot contain u_i^2 or u_i^3. Since H must contain ℓ neighbors of v_i in V_{i+1} and $u_i^2 \notin H$, we conclude that $u_{i+1}^1 \in H$. Similarly, it follows that $u_i^1 \in H$. However, this implies that H contains the nonedge $u_i^1 u_i^1$, a contradiction. Therefore, G is isomorphic to a graph from Construction 1 or 2.

Proof of Theorem 6. Let G be a $K_{\ell,\ell,\ell-1}$-saturated subgraph of K_{n_1,n_2,n_3} of minimum size. It follows from Lemma 8 that if $\delta_i > 2(\ell - 1)$ for any $i \in [3]$, then $|E(G)| \geq 2(\ell - 1)(n_1 + n_2 + n_3)$. It is clear that $\delta(G) \geq 2(\ell - 1)$, and thus we assume that $\delta_1 = \delta_2 = \delta_3 = 2(\ell - 1)$.

For $i \in [3]$, let $v_i \in V_i$ be a vertex of degree $2(\ell - 1)$. Thus v_i has $\ell - 1$ neighbors in V_{i+1} and $\ell - 1$ neighbors in V_{i+2}, and G contains all edges joining $N_{i+1}(v_i)$ to $V_{i+2} \setminus N_{i+2}(v_i)$ and all edges joining $N_{i+2}(v_i)$ to $V_{i+1} \setminus N_{i+1}(v_i)$. Therefore, the vertices of degree $2(\ell - 1)$ in G form an independent set. Let $S = N(v_1) \cup N(v_2) \cup N(v_3)$ and let $S_i = S \cap V_i$. Since v_{i+1} and v_{i+2} have $\ell - 1$ common neighbors, we conclude that $N_i(v_{i+1}) \cup N_i(v_{i+2})$ and therefore $|S_i| = \ell - 1$. Furthermore, since the addition of an edge joining v_i and a vertex in $V_{i+1} \setminus N_{i+1}(v_i)$ yields a copy of $K_{\ell,\ell,\ell-1}$, it follows that $N_{i+1}(v_i)$ and $N_{i+2}(v_i)$ must be completely joined. Thus, S_i and S_{i+1} are completely joined for all $i \in [3]$. Therefore the graph from Construction 4 is a subgraph of G. Since G is $K_{\ell,\ell,\ell-1}$-saturated, it follows that G is isomorphic to the graph from Construction 4, and therefore $\text{sat}(K_{n_1,n_2,n_3}, K_{\ell,\ell,\ell-1}) = 2(\ell - 1)(n_1 + n_2 + n_3) - 3(\ell - 1)^2$.

We note that it is possible to lower the bounds on n_3 in Theorems 5 and 6 through a
more careful analysis of the algebra in Lemmas 7 and 8. However, this appears still to yield a lower bound on \(n_3 \) that is cubic in \(\ell \), and mainly distracts from the main ideas of the proof.

4 The saturation number of \(K_{\ell,\ell,\ell-2} \)

In this section we prove that the graph from Construction 5 is within an additive constant of the minimum number of edges in a \(K_{\ell,\ell,\ell-2} \)-saturated subgraph of \(K_{n,n,n} \). Given two sets of vertices \(S \) and \(T \), we let \([S,T]\) denote the set of edges with one endpoint in \(S \) and one endpoint in \(T \).

Theorem 9. Let \(\ell \) be a positive integer. For \(n \) sufficiently large,

\[
\text{sat}(K_{n,n,n}, K_{\ell,\ell,\ell-2}) \geq 6(\ell - 1)n - (72\ell^2 - 40\ell + 54).
\]

Proof. Let \(G \) be a \(K_{\ell,\ell,\ell-2} \)-saturated subgraph of \(K_{n,n,n} \). If \(\delta_i(G) \geq 6(\ell - 1) \) for some \(i \in [3] \), then \(|E(G)| \geq 6(\ell - 1)n \). Therefore we may assume that \(\delta_i < 6(\ell - 1) \) for all \(i \in [3] \), and consequently a vertex of degree \(\delta_i \) in \(V_i \) must have nonneighbors in both \(V_{i+1} \) and \(V_{i+2} \). Assume that \(v \) is a vertex of degree at most \(2\ell - 3 \) in \(V_i \). If \(|N_{i+1}(v)| < \ell - 2 \), the addition of an edge joining \(v \) and \(V_{i+2} \) does not complete a copy of \(K_{\ell,\ell,\ell-2} \). Therefore we may assume without loss of generality that \(2\ell - 4 \leq d(v) \leq 2\ell - 3 \) and \(v \) has \(\ell - 2 \) neighbors in \(V_{i+1} \) and at most \(\ell - 1 \) neighbors in \(V_{i+2} \). It follows that the addition of an edge joining \(v \) and \(V_{i+1} \) does not complete a copy of \(K_{\ell,\ell,\ell-2} \), and therefore \(G \) is not \(K_{\ell,\ell,\ell-2} \)-saturated. We conclude that \(\delta_i \geq 2\ell - 2 \) for all \(i \in [3] \).

Let \(c = 72\ell^2 - 40\ell + 54 \). If \(|[V_i, V_{i+1}]| \geq 2(\ell - 1)n - c/3 \) for all \(i \in [3] \), then \(|E(G)| \geq 6(\ell - 1)n - c \). Therefore we may assume that \(|[V_{i+1}, V_{i+2}]| < 2(\ell - 1)n - c/3 \) for some \(i \in [3] \). Let \(v \in V_i \) have degree \(\delta_i \). Every vertex in \(V_{i+1} \setminus N_{i+1}(v_i) \) is adjacent to at least \(\ell - 2 \) vertices in \(N_{i+2}(v_i) \). If \(v' \) is a vertex in \(V_i \) that has only \(\ell - 2 \) neighbors in \(V_{i+2} \), then each vertex in \(V_{i+2} \setminus N_{i+2}(v') \) has \(\ell \) neighbors in \(N_{i+1}(v') \). Therefore

\[
|[V_{i+1}, V_{i+2}]| \geq (\ell - 2)(n - \delta_i) + \ell(n - \delta_i - \ell + 2) \\
\geq 2(\ell - 1)n - ((2\ell - 2)\delta_i + \ell^2 - 2\ell) \\
\geq 2(\ell - 1)n - (13\ell^2 - 26\ell + 12),
\]

a contradiction. Therefore we assume that every vertex in \(V_i \) has at least \(\ell - 1 \) neighbors in \(V_{i+2} \), and by symmetry, also in \(V_{i+1} \).
Let \(X_i^0 = N(v_i) \). For \(k \geq 1 \), recursively define \(X_i^k \) to be the vertices in \((V_{i+1} \cup V_{i+2}) \setminus (\bigcup_{j=0}^{k-1} X_i^j) \) that have at least \(\ell - 1 \) neighbors in \(\bigcup_{j=0}^{k-1} X_i^j \). Define \(X_i \) to be the set of vertices that are in \(X_i^k \) for any value of \(k \). By definition, \(G[X_i] \) contains at least \((\ell - 1)(|X_i| - \delta_i) \) edges.

Let \(R_i = (V_{i+1} \cup V_{i+2}) \setminus X_i \). Note that each vertex in \(R_i \) is adjacent to exactly \(\ell - 2 \) vertices in \(N(v_i) \). Let \(T_{i,1}, \ldots, T_{i,a_i} \) be the components of \(G[R_i] \) that are trees. Thus \(G[R_i] \) contains at least \(|R_i| - a_i \) edges, and

\[
|V_{i+1}, V_{i+2}| \geq (\ell - 1)(2n - \delta_i) - a_i \geq 2(\ell - 1)n - 6(\ell - 1)^2 - a_i. \tag{1}
\]

If \(T_{i,b} \) consists of a single vertex \(v \in V_{i+1} \) and \(T_{i,b'} \) consists of a single vertex \(u \in V_{i+2} \), then the addition of \(uv \) cannot complete a copy of \(K_{\ell,\ell-2} \) in \(G \). Therefore, since \(N_{i+1}(v_i) \) and \(N_{i+2}(v_i) \) are nonempty,

\[
a_i \leq \max\{|R_i \cap V_{i+1}|, |R_i \cap V_{i+2}|\} < n. \tag{2}
\]

Observe that

\[
|E(G)| \geq \sum_{j=1}^{a_i} (|E(T_{i,j})| + ||V(T_{i,j}), V_i)||).
\]

If \(|E(T_{i,j})| + ||V(T_{i,j}), V_i)| > 6(\ell - 1)n/a_i \) for all \(j \in [a_i] \), then \(|E(G)| > 6(\ell - 1)n \). Therefore we assume that there is a component \(T_{i,k_i} \) of \(G[R_i] \) such that \(|E(T_{i,k_i})| + |E(T_{i,k_i}, V_i)| \leq 6(\ell - 1)n/a_i \). Thus \(|V(T_{i,k_i})| \leq 6(\ell - 1)n/a_i + 1 \). If \(x \in V_{i+2} \cap V(T_{i,k_i}) \) and \(w \in V_{i+1} \setminus V(T_{i,k_i}) \), then the addition of \(xw \) cannot complete a copy of \(K_{\ell,\ell-2} \) in \(V_{i+1} \cup V_{i+2} \). Therefore each vertex in \(w \in V_{i+1} \setminus V(T_{i,k_i}) \) has at least \(\ell \) neighbors in \(N_i(x) \). Observe that \(|N_i(x)| \leq 6(\ell - 1)n/a_i \).

Similarly, for \(x \in V_{i+1} \cap V(T_{i,k_i}) \), every vertex in \(V_{i+2} \setminus V(T_{i,k_i}) \) has at least \(\ell \) neighbors in \(N_i(x) \), and \(|N_i(x)| \leq 6(\ell - 1)n/a_i \). We consider two cases.

Case 1: For some \(i \in 3 \), \(|V_{i+1}, V_{i+2}| < 2(\ell - 1)n - c/3 \) and \(T_{i,k_i} \) contains vertices in both \(V_{i+1} \) and \(V_{i+2} \). Let \(x_{i+1} \in V_{i+1} \cap V(T_{i,k_i}) \) and let \(x_{i+2} \in V_{i+2} \cap V(T_{i,k_i}) \). Therefore

\[
\sum_{v \in V_i} d(v) \geq \delta_i(n - d_i(x_{i+1}) - d_i(x_{i+2})) + \ell(n - d_{i+2}(x_{i+1})) + \ell(n - d_{i+1}(x_{i+2}))
\]

\[
\geq 2(\ell - 1)(n - 12(\ell - 1)n/a_i) + 2\ell(n - 6(\ell - 1)n/a_i)
\]

Summing the edges we have

\[
|E(G)| \geq |V_{i+1}, V_{i+2}| + \sum_{v \in V_i} d(v)
\]

\[
\geq 2(\ell - 1)n - 6(\ell - 1)^2 - a_i + 2(\ell - 1)(n - 12(\ell - 1)n/a_i) + 2\ell(n - 6(\ell - 1)n/a_i)
\]

\[
\geq -a_i + (6(\ell - 1) + 2)n - 6(\ell - 1)^2 - (36\ell^2 - 60\ell + 24)n/a_i.
\]

13
If \(|E(G)| < 6(\ell - 1)n\), then we conclude that

\[a_i < (n - 3(\ell - 1)^2) - \sqrt{(n - 3(\ell - 1)^2)^2 - (36\ell^2 - 60\ell + 24)n} \quad \text{or} \quad a_i > (n - 3(\ell - 1)^2) + \sqrt{(n - 3(\ell - 1)^2)^2 - (36\ell^2 - 60\ell + 24)n}. \]

From (2) we know that \(a_i < n\), so we conclude that for \(n\) sufficiently large,

\[a_i < (n - 3(\ell - 1)^2) - \sqrt{(n - 3(\ell - 1)^2)^2 - (36\ell^2 - 60\ell + 24)n}. \]

Since

\[\lim_{n \to \infty} (n - 3(\ell - 1)^2) - \sqrt{(n - 3(\ell - 1)^2)^2 - (36\ell^2 - 60\ell + 24)n} = 18\ell^2 - 30\ell + 12, \]

it follows from the integrality of \(a_i\) that for \(n\) sufficiently large, \(a_i \leq 18\ell^2 - 30\ell + 12\). Therefore \(|[V_{i+1}, V_{i+2}]| \geq 2(\ell - 1)n - 6(\ell - 1)^2 - (18\ell^2 - 30\ell + 12) \geq 2(\ell - 1)n - c/3\), a contradiction.

Case 2: For some \(i \in 3\), \(|[V_{i+1}, V_{i+2}]| < 2(\ell - 1)n - c/3\) and \(T_{i,k_i} \cap V_{i+1} = \emptyset\) or \(T_{i,k_i} \cap V_{i+2} = \emptyset\). Without loss of generality we assume that \(|[V_2, V_3]| < 2(\ell - 1)n - c/3\) and \(T_{1,k_1} \cap V_3 = \emptyset\). Thus \(T_{1,k_1}\) consists of a single vertex in \(V_2\) that has only \(\ell - 2\) neighbors in \(V_3\); call this vertex \(x\). Furthermore, \(d(x) \leq 6(\ell - 1)n/a_1\). Since the addition of an edge joining \(x\) to \(V_3\) cannot complete a copy of \(K_{\ell,\ell}\) in \(V_2 \cup V_3\), each nonneighbor of \(x\) in \(V_3\) has at least \(\ell\) neighbors in \(N_1(x)\). Since every vertex in \(V_1\) has at least \(\ell - 1\) neighbors in \(V_3\), we conclude that \(|[V_1, V_3]| \geq (2(\ell - 1)n - 6(\ell - 1)n/a_1)\). Consequently,

\[|E(G)| = |[V_1, V_2]| + |[V_1, V_3]| + |[V_2, V_3]| \]

\[\geq |[V_1, V_2]| + (2(\ell - 1)n - 6(\ell - 1)n/a_1) + (2(\ell - 1)n - 6(\ell - 1)^2 - a_1) \]

\[= |[V_1, V_2]| + 4(\ell - 1)n + n - (12\ell^2 - 18\ell + 6)n/a_1 - 6(\ell - 1)^2 - a_1. \]

First assume that \(|[V_1, V_2]| \geq 2(\ell - 1)n - c/3\). If \(|E(G)| < 6(\ell - 1)n - c\), then

\[0 \geq -a_1 + n - 6(\ell - 1)^2 + 2c/3 - (12\ell^2 - 18\ell + 6)n/a_1, \]

which requires

\[a_1 < \frac{1}{2} \left(n - 6(\ell - 1)^2 + 2c/3 - \sqrt{(n - 6(\ell - 1)^2 + 2c/3)^2 - (48\ell^2 - 72\ell + 24)n}\right) \quad \text{or} \quad (3) \]

\[a_1 > \frac{1}{2} \left(n - 6(\ell - 1)^2 + 2c/3 + \sqrt{(n - 6(\ell - 1)^2 + 2c/3)^2 - (48\ell^2 - 72\ell + 24)n}\right). \quad (4) \]

Since \(c \geq 45\ell^2 - 72\ell + 27\), it follows that \(2c/3 \geq 30\ell^2 - 48\ell + 18 \geq 24\ell^2 - 36\ell + 12 + 6(\ell - 1)^2\). Therefore, if inequality (4) holds, then \(a_1 \geq n\). This violates inequality (2), so we conclude that

\[a_1 < \frac{1}{2} \left(n - 6(\ell - 1)^2 + 2c/3 - \sqrt{(n - 6(\ell - 1)^2 + 2c/3)^2 - (48\ell^2 - 72\ell + 24)n}\right). \]
Since
\[
\lim_{n \to \infty} \frac{n - 6(\ell - 1)^2 + \frac{2}{3}c - \sqrt{(n - 6(\ell - 1)^2 + \frac{2}{3}c)^2 - (48\ell^2 - 72\ell + 24)n}}{2} = 12\ell^2 - 18\ell + 6,
\]
it follows from the integrality of \(a_1\) that for \(n\) sufficiently large, \(a_1 \leq 12\ell^2 - 18\ell + 6\). Therefore \(|[V_2, V_3]| \geq 2(\ell - 1)n - 6(\ell - 1)^2 - (12\ell^2 - 18\ell + 6) \geq 2(\ell - 1)n - c/3\), a contradiction.

Now assume that \(|[V_1, V_2]| < 2(\ell - 1)n - c/3\). Therefore \(T_{3,k_3}\) exists. If \(T_{3,k_3}\) contains vertices in both \(V_1\) and \(V_2\), then by Case 1 we conclude that \(|E(G)| \geq 6(\ell - 1)n - c\). Therefore we assume that \(T_{3,k_3}\) contains a single vertex \(y \in V_1 \cup V_2\), and \(d(y) \leq 6(\ell - 1)n/a_3\). Since every vertex in \(V_1\) has at least \(\ell - 1\) neighbors in both \(V_2\) and \(V_3\) and \(y\) has only \(\ell - 2\) neighbors in \(V_1 \cup V_2\), we conclude that \(y \in V_2\).

The \(n - (\ell - 2)\) nonneighbors of \(x\) in \(V_3\) each have at least \(\ell\) neighbors in \(N_1(x)\). Similarly, each vertex in \(V_1 \setminus (N_1(x) \cup N_1(y))\) has at least \(\ell\) neighbors in \(N_3(y)\). Since \(|V_1 \setminus (N_1(x) \cup N_1(y))| \geq n - 6(\ell - 1)n/a_1 - (\ell - 2)\), we conclude that
\[
|[V_1, V_3]| \geq 2\ell n - 6\ell(\ell - 1)n/a_1 - 2\ell(\ell - 2).
\]
Using inequalities (1) and (2), we have
\[
|E(G)| = |[V_1, V_3]| + |[V_2, V_3]| + |[V_1, V_2]|
\]
\[
\geq (2\ell n - 6\ell(\ell - 1)n/a_1 - 2\ell(\ell - 2)) + (4(\ell - 1)n - 12(\ell - 1)^2 - a_1 - a_3)
\]
\[
\geq -a_1 + 6(\ell - 1)n + 2n - a_3 - 14\ell^2 - 28\ell + 12 - 6\ell(\ell - 1)n/a_1
\]
\[
\geq -a_1 + 6(\ell - 1)n + n - (14\ell^2 - 28\ell + 12) - 6\ell(\ell - 1)n/a_1.
\]
Therefore \(|E(G)| < 6(\ell - 1)n - c\) only if
\[
a_1 < \frac{1}{2} \left(n + c - (14\ell^2 - 28\ell + 12) - \sqrt{(n + c - (14\ell^2 - 28\ell + 12))^2 - 24\ell(\ell - 1)n} \right)
\]
(5)
\[
a_1 > \frac{1}{2} \left(n + c - (14\ell^2 - 28\ell + 12) + \sqrt{(n + c - (14\ell^2 - 28\ell + 12))^2 - 24\ell(\ell - 1)n} \right).
\]
(6)
Since \(c \geq 26\ell^2 - 40\ell + 12\), it follows that \(c - (14\ell^2 - 28\ell + 12) \geq 12\ell(\ell - 1)\). Therefore, if inequality (6) holds, then \(a_1 \geq n\). This violates inequality (2), so we conclude that
\[
a_1 < \frac{1}{2} \left(n + c - (14\ell^2 - 28\ell + 12) - \sqrt{(n + c - (14\ell^2 - 28\ell + 12))^2 - 24\ell(\ell - 1)n} \right).
\]
Since
\[
\lim_{n \to \infty} \frac{n + c - (14\ell^2 - 28\ell + 12) - \sqrt{(n + c - (14\ell^2 - 28\ell + 12))^2 - 24\ell(\ell - 1)n}}{2} = 6\ell(\ell-1),
\]
it follows from the integrality of \(a_1\) that for \(n\) sufficiently large, \(a_1 \leq 6\ell(\ell - 1)\). Therefore \(|V_2, V_3| \geq 2(\ell - 1)n - 6(\ell - 1)^2 - 6\ell(\ell - 1) \geq 2(\ell - 1)n - c/3\), a contradiction.
5 Conclusion

We conclude with several open questions and conjectures. First, we conjecture that in a sufficiently large, sufficiently unbalanced host graph, the constructions in Section 2 are best possible.

Conjecture 10. Let \(\ell \) and \(m \) be positive integers such that \(\ell > m \). For \(n_1 \geq n_2 \geq n_3 \) sufficiently large compared to \(\ell \), and \(n_1 \) sufficiently large compared to \(n_3 \),

\[
\text{sat}(K_{n_1,n_2,n_3}, K_{\ell,m,m}) = 2m(n_1 + n_2 + n_3) + (\ell - m)(n_2 + 2n_3) - 3\ell m - 3.
\]

Conjecture 11. Let \(\ell, m, \) and \(p \) be positive integers such that \(\ell \geq m > p \). For \(n_1 \geq n_2 \geq n_3 \), \(n_3 \) sufficiently large compared to \(\ell \), and \(n_1 \) sufficiently large compared to \(n_3 \),

\[
\text{sat}(K_{n_1,n_2,n_3}, K_{\ell,m,p}) = 2(m - 1)(n_1 + n_2 + n_3) + (\ell - m)(n_2 + 2n_3) - 3\ell(m - 1) + 3m - 3.
\]

Following the direction taken in [5], one can study the saturation number of \(K_{\ell,m,p} \) in \(k \)-partite graphs for \(k > 3 \). The following is the logical place to begin such research.

Question 1. Let \(K_k^n \) denote the complete \(k \)-partite graph in which all partite sets have size \(n \). For \(\ell \geq 2, k \geq 4, \) and \(n \) sufficiently large, what is \(\text{sat}(K_k^n, K_{\ell,\ell,\ell}) \)?

We also note that if \(G \) is a graph with chromatic number at most 3, then determining \(\text{sat}(K_{n_1,n_2,n_3}, G) \) is nontrivial. Thus it is natural to consider the saturation number of bipartite graphs in complete tripartite graphs. As a first example, we compute the saturation number of \(C_4 \) in tripartite graphs.

Proposition 12. For \(n_1 \geq n_2 \geq n_3 \geq 2 \),

\[
\text{sat}(K_{n_1,n_2,n_3}, C_4) = n_1 + n_2 + n_3.
\]

Proof. It is clear that a \(C_4 \)-saturated subgraph of \(K_{n_1,n_2,n_3} \) must be connected, and no spanning tree of \(K_{n_1,n_2,n_3} \) is \(C_4 \)-saturated. It is also straightforward to check that the graph with edge set \(\{v_i^1v_{i+1}^3 | i \in [3], j \in [n_{i+1}] \} \) is \(C_4 \)-saturated (see Figure 6).

Observe that \(\text{sat}(K_{n_1,n_2,n_3}, C_4) \) and the sharpness example are not obtained using the bipartite saturation number of \(C_4 \). Thus it appears that the study of saturation numbers of bipartite graphs in tripartite graphs will differ from the work initiated in [6] and [7].
Figure 6: A C_4-saturated subgraph of K_{n_1,n_2,n_3}. Solid lines denote complete joins between two sets.

References

[9] W. Wessel, Über eine Klasse paarer Graphen. II. Bestimmung der Minimalgraphen,