Top and side surfaces of a cubical furnace are black, and are maintained at uniform temperatures. Net radiation heat transfer rate to the base from the top and side surfaces are to be determined.

Assumptions
1. Steady operating conditions exist
2. The surfaces are opaque, diffuse, and gray.
3. Convection heat transfer is not considered.

Properties
The emissivities are given to be $\varepsilon = 0.7$ for the bottom surface and 1 for other surfaces.

Analysis
We consider the base surface to be surface 1, the top surface to be surface 2 and the side surfaces to be surface 3. The cubical furnace can be considered to be three-surface enclosure with a radiation network shown in the figure. The areas and blackbody emissive powers of surfaces are

$$A_1 = A_2 = (10 \text{ ft})^2 = 100 \text{ ft}^2 \quad A_3 = 4(10 \text{ ft})^2 = 400 \text{ ft}^2$$

$$E_{b1} = \sigma T_1^4 = (0.1714 \times 10^{-8} \text{ Btu/h ft}^2 \cdot \text{R}^4)(800 \text{ R})^4 = 702 \text{ Btu/h ft}^2$$

$$E_{b2} = \sigma T_2^4 = (0.1714 \times 10^{-8} \text{ Btu/h ft}^2 \cdot \text{R}^4)(1600 \text{ R})^4 = 11,233 \text{ Btu/h ft}^2$$

$$E_{b3} = \sigma T_3^4 = (0.1714 \times 10^{-8} \text{ Btu/h ft}^2 \cdot \text{R}^4)(2400 \text{ R})^4 = 56,866 \text{ Btu/h ft}^2$$

The view factor from the base to the top surface of the cube is $F_{12} = 0.2$. From the summation rule, the view factor from the base or top to the side surfaces is $F_{11} + F_{12} + F_{13} = 1 \rightarrow F_{13} = 1 - F_{12} = 1 - 0.2 = 0.8$

since the base surface is flat and thus $F_{11} = 0$. Then the radiation resistances become

$$R_1 = \frac{1 - \varepsilon_1}{A_1 \varepsilon_1} = \frac{1 - 0.7}{100 \text{ ft}^2 (0.7)} = 0.0043 \text{ ft}^{-2} \quad R_{12} = \frac{1}{A_1 F_{12}} = \frac{1}{100 \text{ ft}^2 (0.2)} = 0.0500 \text{ ft}^{-2}$$

$$R_{13} = \frac{1}{A_1 F_{13}} = \frac{1}{100 \text{ ft}^2 (0.8)} = 0.0125 \text{ ft}^{-2}$$

Note that the side and the top surfaces are black, and thus their radiosities are equal to their emissive powers. The radiosity of the base surface is determined

$$\frac{E_{b1} - J_1}{R_1} + \frac{E_{b2} - J_1}{R_{12}} + \frac{E_{b3} - J_1}{R_{13}} = 0$$

Substituting,

$$\frac{702 - J_1}{0.0043} + \frac{11,233 - J_1}{0.500} + \frac{56,866 - J_1}{0.0125} = 0 \rightarrow J_1 = 15,054 \text{ W/m}^2$$

(a) The net rate of radiation heat transfer between the base and the side surfaces is

$$Q_{31} = \frac{E_{b3} - J_1}{R_{13}} = \frac{(56,866 - 15,054) \text{ Btu/h ft}^2}{0.0125 \text{ ft}^{-2}} = 3.345 \times 10^6 \text{ Btu/h}$$

(b) The net rate of radiation heat transfer between the base and the top surfaces is

$$Q_{12} = \frac{J_1 - E_{b2}}{R_{12}} = \frac{(15,054 - 11,233) \text{ Btu/h ft}^2}{0.05 \text{ ft}^{-2}} = 7.642 \times 10^4 \text{ Btu/h}$$

The net rate of radiation heat transfer to the base surface is finally determined from

$$Q_1 = Q_{21} + Q_{31} = -76,420 + 3,344,960 = 3.269 \times 10^6 \text{ Btu/h}$$

Discussion
The same result can be found form

$$\frac{J_1 - E_{b1}}{R_1} = \frac{(15,054 - 702) \text{ Btu/h ft}^2}{0.0043 \text{ ft}^{-2}} = 3.338 \times 10^6 \text{ Btu/h}$$

The small difference is due to round-off error.