1. **Exercise 21.42.** (a) Use symmetry (b) Superpose surviving components according to the point charge formula \(\vec{E} = \frac{kQ}{r^2} \hat{r} \).

2. **Problem 21.74.** (b) Draw FBD. It should have four forces: \(F_T, F_g, \) and two \(F_E \): one from the external field, the other from the presence of the neighbor charge. Solve for \(\Sigma F_y = 0 \) and \(\Sigma F_x = 0 \).

3. **Exercise 21.51.** (a) \(dE_x = \frac{kqQ}{h^2} \cdot \cos \alpha \) \(E_x = \int_0^{2\pi} dE_x \).
(b) \(F_x = qE \).

4. **Problem 21.65.** (a) Draw FBD. Solve \(\Sigma F_x = 0 \) and \(\Sigma F_y = 0 \).

5. **Problem 21.86.** (a) Consider mirror symmetric elements of charge on either side of the y-axis and evaluate their resultant \(dE \) at the origin. Integrate from \(0 \) to \(\pi/2 \) to obtain the answer.
 Note: \(k = \frac{1}{4\pi\varepsilon_0} \).

6. **Exercise 21.31.** Neglect gravity. This becomes a 2D projectile motion problem with one external force, \(F_E \), in the \(+\hat{y} \) direction. Address \(x \)- and \(y \)-kinematic equations. Example:
 \(\vec{v}_y = v_{y0} + a_y t \)
 \(\vec{y} = y_0 + v_{y0} t + \frac{1}{2} a_y t^2 \), etc. in which \(a_y = F_E/m \), and \(\vec{F}_E = q \vec{E} \).

7. **Problem 21.91.** (a) Use the result of Ex. 21.51, with \(dQ = \sigma \cdot dA \), with \(dA = 2\pi r dr \). The band thickness. Then integrate from \(r = R_1 \) to \(r = R_2 \).
(b) Do small \(x \) asymptotics and prove SHM.