1. **Exercise 22.2.** \(\oint \Phi_E = \int \vec{E} \cdot d\vec{A} = EA \cos \theta \) where \(\theta \) is the angle between the area vector (NOT the angle shown!) and the \(\vec{E} \) field. Integrating \(\Phi_E = EA \cos \theta \) where \(A \) is the rectangle area.

2. **Exercise 22.21.** Apply Gauss' law to \(S_1 \) and \(S_2 \). For RHS, you will have \(Q_{\text{encd}}(a) = \rho \int_a^b 4\pi a^2 dx \) for \(S_1 \) and \(Q_{\text{encd}}(a) \) for \(S_2 \).

3. **Exercise 22.49.** (a) In shell region, use \(Q_{\text{encd}}(a) = \int_a^b \rho(x) 4\pi a^2 dx \).
(b) Arrange for the \(r \)-dependent parts of the new enclosed charge to cancel.

4. **Exercise 22.29.** (a) Use \(Q = \sigma \cdot (2\pi R L) = \sigma \cdot L \) (b) Use Gauss' law for cylindrical symmetry being mindful of the fact that any charge on a conductor appears on its outer surface.

5. **Exercise 22.19.** (a) Add the induced \(-\mathcal{Q}\) that results to preexisting \(\sigma_0 : \sigma' = \sigma_0 - \frac{\Phi}{4\pi b^2} \)
(b) (c) Set up appropriate Gaussian surfaces \(\Sigma \) do the needful.

6. **Problem 22.33.** Use the standard result for \(E = \frac{\sigma}{2\varepsilon_0} \) an insulating infinite sheet electric field. Then \(F_E = q_x E \) where \(q_x \) is the spheres charge. Now just solve the static equilibrium problem: \(\sum F_x = 0 \) and \(\sum F_y = 0 \), eliminating tension through dividing the equations.

7. **Problem 22.55.** (a) Use symmetry (b)(d)
Set up pillbox Gaussian surfaces \(S_1 \) of \(S_2 \). For the enclosed charge, \(Q = \int \rho(x) A \, dx \) where \(A = C\cdot S \cdot \text{area of pillbox}. \)