ERRATA Applied Optimization with MATLAB Programming, Second Edition        P.Venkataraman       John Wiley (2009)
Top
page 100
page 157
page 163
page 166
page 167
page 177
page 178
page 184
page 186
page 191
page 195
page 196
page 202
page 239
page 240
page 243
page 244
page 246
page 247
page 259
page 260
page 333
page 334











Applied Optimization with MATLAB Programming, Second Edition
P.Venkataraman
John Wiley (2009)


page 100

pg 100

top

page 157


x1
x2
x3
x4
x5
b
0
0.7333
1
-0.1333
0
5.1667
1
-0.3333
0
0.3333
0
8.3333
0
7
0
-1
1
45
0
-1230
0
330
0
13500

top

page 163

x1  =  800;       x2  =  1200,     f = 16800  or $ 168.00                                    (3.27)

top

page 166


Table 3.7   Example 3.2: Simplex Table 2, Phase I (canonical form)
x1
x2
s1
s2
a1
s3
s4
b
0
0
1
1
-1
0
0
1,360
1
1
0
-1
1
0
0
640
0
-1
0
1
-1
1
0
160
0
1
0
0
0
0
1
1,440
0
0.4
0
-1.4
1.4
0
0
f-18,224
0
0
0
0
1
0
0
Af


top

page 167

The unit vector [1 0 0 0 0 ]T must be constructed under the x2 column

top

page 177

Simplex Table 2:  Using the pivot row identified in the last table, the unit vector [0 0 1 0]T under the s2 column

are to transfer the unit vector [1 0 0 0]T from the s1 column to the x2 column.

Simplex Table 3: Table 3.19 denotes the reduced table with the canonical form after the required row operations are completed. The basis variables are x2, x4, s3. The first row is the pivot row. The EBV is x1 and the LBV is x2. The pivot row is the first row.

top

page 178

x =  9.091,      x4  =  61.364,     x =  0,       x3  =  0,      s1 = 0,    s2 = 0,     s3 = 359.091,    f  =  -1281.82

top

page 184
        
After the introduction of the slack variables (s1, s2, s3, s4) the solution to the primal problem

top


page 191

Since x1 and x3 are basic,  with the reduced coat coefficient of 0, the corresponding slack/surplus s1, s3 variables will be zero, as observed in Table 3.31. 

top

page 195

x1* = 10.4761,    x2* = 6.4285,   x3* = 0.4524,   f* = -21407.14

top

page 196

From this discussion it is apparent that to keep the location the original solution unchanged, c1 must be less than   -450.

top



page 202

Problem 3.14

problem 3 14


Problem 3.15

Problem 3 15


top
page 239

Equation (4.70a) is incorrect.  It is based on Equation (4.48b) which is correct.  This error is propogated is severla pages where this constraint is handled.

pg 239                   (4.70b)            

top


page 240

pg 240                (4.71b)


page 243

pg 243 1             (4.80)

pg 243 2                                     (4.81)

top



page 244

pg 244                                                (4.82a)

top


page 246

pg 246                                                                              (4.90b)

top


page 247

( The first equation in the Lagrange Multiplier Method Sub-section)

pg 247 1         

pg 247 2                                     (4.91) 

pg 247 3                                             (4.92a)

pg 247 4                                                                                          (4.92d)

top


page 259

4.6.      Proove that the function will not change along the tangent

top


page 260

4.8       Express the Taylor series expansion (quadratic) of the function f(x) = (2 –3x  + x2) sin x about the point x = 0.707. Confirm your results through the Symbolic Math Toolbox.  Plot the original function and the approximation.

top

page 333

6.3  Apply the Pattern Search method to Example 5.3

top

page 334

6.6       Translate the Powell method into working MATLAB code. Verify solution to Example 6.1 and Example 5.3. Start from several points and verify that number of cycles to converge is the same.

6.19     Start the Steepest Descent method from different points for problem below and identify where the solution requires more than 15 iterations.
             model 6 19

6.24     Example 6.2 was explicitly created to challenge the numerical techniques for unconstrained optimization.  There are many other similar test problems.  A problem with steep minimum (Beale, Survey of Integer Programming) is


top